Commit 7e95ded1 by Daniel Lee Committed by GitHub

AzureMonitor: remove duplicate query logic on the frontend (#17198)

* feat: AzureMonitor implements legend key on backend

To be able to remove the duplicated query logic on the
frontend, the backend code needs to implement alias
patterns for legend keys as well as allowing the default
list of allowed time grains to be overridden. Some metrics
do not support all the time grains and the auto timegrain
calculation can be incorrect if the list is not overridden.

* feat: AzureMonitor - removes duplicate query logic on frontend

* AzureMonitor small refactoring

Extracted method and tidied up the auto time grain
code.

* azuremonitor: support for auto time grains for alerting

Converts allowed timegrains into ms and saves in dashboard json.
This makes queries for alerting with an auto time grain work in
the same way as the frontend.

* chore: typings -> implicitAny count down to 3413

* azuremonitor: add more typings
parent 55b63905
......@@ -32,7 +32,7 @@ type AzureMonitorDatasource struct {
var (
// 1m, 5m, 15m, 30m, 1h, 6h, 12h, 1d in milliseconds
allowedIntervalsMS = []int64{60000, 300000, 900000, 1800000, 3600000, 21600000, 43200000, 86400000}
defaultAllowedIntervalsMS = []int64{60000, 300000, 900000, 1800000, 3600000, 21600000, 43200000, 86400000}
)
// executeTimeSeriesQuery does the following:
......@@ -99,13 +99,15 @@ func (e *AzureMonitorDatasource) buildQueries(queries []*tsdb.Query, timeRange *
}
azureURL := ub.Build()
alias := fmt.Sprintf("%v", azureMonitorTarget["alias"])
alias := ""
if val, ok := azureMonitorTarget["alias"]; ok {
alias = fmt.Sprintf("%v", val)
}
timeGrain := fmt.Sprintf("%v", azureMonitorTarget["timeGrain"])
timeGrains := azureMonitorTarget["allowedTimeGrainsMs"]
if timeGrain == "auto" {
autoInterval := e.findClosestAllowedIntervalMS(query.IntervalMs)
tg := &TimeGrain{}
timeGrain, err = tg.createISO8601DurationFromIntervalMS(autoInterval)
timeGrain, err = e.setAutoTimeGrain(query.IntervalMs, timeGrains)
if err != nil {
return nil, err
}
......@@ -120,7 +122,7 @@ func (e *AzureMonitorDatasource) buildQueries(queries []*tsdb.Query, timeRange *
dimension := strings.TrimSpace(fmt.Sprintf("%v", azureMonitorTarget["dimension"]))
dimensionFilter := strings.TrimSpace(fmt.Sprintf("%v", azureMonitorTarget["dimensionFilter"]))
if azureMonitorTarget["dimension"] != nil && azureMonitorTarget["dimensionFilter"] != nil && len(dimension) > 0 && len(dimensionFilter) > 0 {
if azureMonitorTarget["dimension"] != nil && azureMonitorTarget["dimensionFilter"] != nil && len(dimension) > 0 && len(dimensionFilter) > 0 && dimension != "None" {
params.Add("$filter", fmt.Sprintf("%s eq '%s'", dimension, dimensionFilter))
}
......@@ -143,6 +145,35 @@ func (e *AzureMonitorDatasource) buildQueries(queries []*tsdb.Query, timeRange *
return azureMonitorQueries, nil
}
// setAutoTimeGrain tries to find the closest interval to the query's intervalMs value
// if the metric has a limited set of possible intervals/time grains then use those
// instead of the default list of intervals
func (e *AzureMonitorDatasource) setAutoTimeGrain(intervalMs int64, timeGrains interface{}) (string, error) {
// parses array of numbers from the timeGrains json field
allowedTimeGrains := []int64{}
tgs, ok := timeGrains.([]interface{})
if ok {
for _, v := range tgs {
jsonNumber, ok := v.(json.Number)
if ok {
tg, err := jsonNumber.Int64()
if err == nil {
allowedTimeGrains = append(allowedTimeGrains, tg)
}
}
}
}
autoInterval := e.findClosestAllowedIntervalMS(intervalMs, allowedTimeGrains)
tg := &TimeGrain{}
autoTimeGrain, err := tg.createISO8601DurationFromIntervalMS(autoInterval)
if err != nil {
return "", err
}
return autoTimeGrain, nil
}
func (e *AzureMonitorDatasource) executeQuery(ctx context.Context, query *AzureMonitorQuery, queries []*tsdb.Query, timeRange *tsdb.TimeRange) (*tsdb.QueryResult, AzureMonitorResponse, error) {
queryResult := &tsdb.QueryResult{Meta: simplejson.New(), RefId: query.RefID}
......@@ -257,7 +288,7 @@ func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, data
metadataName = series.Metadatavalues[0].Name.LocalizedValue
metadataValue = series.Metadatavalues[0].Value
}
defaultMetricName := formatLegendKey(query.UrlComponents["resourceName"], data.Value[0].Name.LocalizedValue, metadataName, metadataValue)
metricName := formatLegendKey(query.Alias, query.UrlComponents["resourceName"], data.Value[0].Name.LocalizedValue, metadataName, metadataValue, data.Namespace, data.Value[0].ID)
for _, point := range series.Data {
var value float64
......@@ -279,10 +310,11 @@ func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, data
}
queryRes.Series = append(queryRes.Series, &tsdb.TimeSeries{
Name: defaultMetricName,
Name: metricName,
Points: points,
})
}
queryRes.Meta.Set("unit", data.Value[0].Unit)
return nil
}
......@@ -290,13 +322,21 @@ func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, data
// findClosestAllowedIntervalMs is used for the auto time grain setting.
// It finds the closest time grain from the list of allowed time grains for Azure Monitor
// using the Grafana interval in milliseconds
func (e *AzureMonitorDatasource) findClosestAllowedIntervalMS(intervalMs int64) int64 {
closest := allowedIntervalsMS[0]
// Some metrics only allow a limited list of time grains. The allowedTimeGrains parameter
// allows overriding the default list of allowed time grains.
func (e *AzureMonitorDatasource) findClosestAllowedIntervalMS(intervalMs int64, allowedTimeGrains []int64) int64 {
allowedIntervals := defaultAllowedIntervalsMS
if len(allowedTimeGrains) > 0 {
allowedIntervals = allowedTimeGrains
}
for i, allowed := range allowedIntervalsMS {
closest := allowedIntervals[0]
for i, allowed := range allowedIntervals {
if intervalMs > allowed {
if i+1 < len(allowedIntervalsMS) {
closest = allowedIntervalsMS[i+1]
if i+1 < len(allowedIntervals) {
closest = allowedIntervals[i+1]
} else {
closest = allowed
}
......@@ -306,9 +346,50 @@ func (e *AzureMonitorDatasource) findClosestAllowedIntervalMS(intervalMs int64)
}
// formatLegendKey builds the legend key or timeseries name
func formatLegendKey(resourceName string, metricName string, metadataName string, metadataValue string) string {
if len(metadataName) > 0 {
return fmt.Sprintf("%s{%s=%s}.%s", resourceName, metadataName, metadataValue, metricName)
// Alias patterns like {{resourcename}} are replaced with the appropriate data values.
func formatLegendKey(alias string, resourceName string, metricName string, metadataName string, metadataValue string, namespace string, seriesID string) string {
if alias == "" {
if len(metadataName) > 0 {
return fmt.Sprintf("%s{%s=%s}.%s", resourceName, metadataName, metadataValue, metricName)
}
return fmt.Sprintf("%s.%s", resourceName, metricName)
}
return fmt.Sprintf("%s.%s", resourceName, metricName)
startIndex := strings.Index(seriesID, "/resourceGroups/") + 16
endIndex := strings.Index(seriesID, "/providers")
resourceGroup := seriesID[startIndex:endIndex]
result := legendKeyFormat.ReplaceAllFunc([]byte(alias), func(in []byte) []byte {
metaPartName := strings.Replace(string(in), "{{", "", 1)
metaPartName = strings.Replace(metaPartName, "}}", "", 1)
metaPartName = strings.ToLower(strings.TrimSpace(metaPartName))
if metaPartName == "resourcegroup" {
return []byte(resourceGroup)
}
if metaPartName == "namespace" {
return []byte(namespace)
}
if metaPartName == "resourcename" {
return []byte(resourceName)
}
if metaPartName == "metric" {
return []byte(metricName)
}
if metaPartName == "dimensionname" {
return []byte(metadataName)
}
if metaPartName == "dimensionvalue" {
return []byte(metadataValue)
}
return in
})
return string(result)
}
......@@ -67,6 +67,49 @@ func TestAzureMonitorDatasource(t *testing.T) {
So(queries[0].Alias, ShouldEqual, "testalias")
})
Convey("and has a time grain set to auto", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "auto",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT15M")
})
Convey("and has a time grain set to auto and the metric has a limited list of allowed time grains", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "auto",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"allowedTimeGrainsMs": []interface{}{"auto", json.Number("60000"), json.Number("300000")},
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT5M")
})
Convey("and has a dimension filter", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
......@@ -89,6 +132,29 @@ func TestAzureMonitorDatasource(t *testing.T) {
So(queries[0].Target, ShouldEqual, "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
})
Convey("and has a dimension filter set to None", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "PT1M",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"dimension": "None",
"dimensionFilter": "*",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Target, ShouldEqual, "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
})
})
Convey("Parse AzureMonitor API response in the time series format", func() {
......@@ -235,6 +301,48 @@ func TestAzureMonitorDatasource(t *testing.T) {
So(res.Series[2].Name, ShouldEqual, "grafana{blobtype=Azure Data Lake Storage}.Blob Count")
So(res.Series[2].Points[0][0].Float64, ShouldEqual, 0)
})
Convey("when data from query has alias patterns", func() {
data, err := loadTestFile("./test-data/2-azure-monitor-response-total.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
Alias: "custom {{resourcegroup}} {{namespace}} {{resourceName}} {{metric}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "custom grafanastaging Microsoft.Compute/virtualMachines grafana Percentage CPU")
})
Convey("when data has dimension filters and alias patterns", func() {
data, err := loadTestFile("./test-data/6-azure-monitor-response-multi-dimension.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
Alias: "{{dimensionname}}={{DimensionValue}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "blobtype=PageBlob")
So(res.Series[1].Name, ShouldEqual, "blobtype=BlockBlob")
So(res.Series[2].Name, ShouldEqual, "blobtype=Azure Data Lake Storage")
})
})
Convey("Find closest allowed interval for auto time grain", func() {
......@@ -247,13 +355,16 @@ func TestAzureMonitorDatasource(t *testing.T) {
"2d": 172800000,
}
closest := datasource.findClosestAllowedIntervalMS(intervals["3m"])
closest := datasource.findClosestAllowedIntervalMS(intervals["3m"], []int64{})
So(closest, ShouldEqual, intervals["5m"])
closest = datasource.findClosestAllowedIntervalMS(intervals["10m"])
closest = datasource.findClosestAllowedIntervalMS(intervals["10m"], []int64{})
So(closest, ShouldEqual, intervals["15m"])
closest = datasource.findClosestAllowedIntervalMS(intervals["2d"])
closest = datasource.findClosestAllowedIntervalMS(intervals["2d"], []int64{})
So(closest, ShouldEqual, intervals["1d"])
closest = datasource.findClosestAllowedIntervalMS(intervals["3m"], []int64{intervals["1d"]})
So(closest, ShouldEqual, intervals["1d"])
})
})
......
......@@ -4,6 +4,7 @@ import (
"context"
"fmt"
"net/http"
"regexp"
"github.com/grafana/grafana/pkg/infra/log"
"github.com/grafana/grafana/pkg/models"
......@@ -11,7 +12,8 @@ import (
)
var (
azlog log.Logger
azlog log.Logger
legendKeyFormat *regexp.Regexp
)
// AzureMonitorExecutor executes queries for the Azure Monitor datasource - all four services
......@@ -36,6 +38,7 @@ func NewAzureMonitorExecutor(dsInfo *models.DataSource) (tsdb.TsdbQueryEndpoint,
func init() {
azlog = log.New("tsdb.azuremonitor")
tsdb.RegisterTsdbQueryEndpoint("grafana-azure-monitor-datasource", NewAzureMonitorExecutor)
legendKeyFormat = regexp.MustCompile(`\{\{\s*(.+?)\s*\}\}`)
}
// Query takes in the frontend queries, parses them into the query format
......
......@@ -93,216 +93,48 @@ describe('AzureMonitorDatasource', () => {
metricDefinition: 'Microsoft.Compute/virtualMachines',
metricName: 'Percentage CPU',
timeGrain: 'PT1H',
alias: '',
alias: '{{metric}}',
},
},
],
};
describe('and data field is average', () => {
const response = {
value: [
{
timeseries: [
{
data: [
{
timeStamp: '2017-08-22T21:00:00Z',
average: 1.0503333333333331,
},
{
timeStamp: '2017-08-22T22:00:00Z',
average: 1.045083333333333,
},
{
timeStamp: '2017-08-22T23:00:00Z',
average: 1.0457499999999995,
},
],
},
],
id:
'/subscriptions/xxx/resourceGroups/testRG/providers/Microsoft.Compute/virtualMachines' +
'/testRN/providers/Microsoft.Insights/metrics/Percentage CPU',
name: {
value: 'Percentage CPU',
localizedValue: 'Percentage CPU',
},
type: 'Microsoft.Insights/metrics',
const response = {
results: {
A: {
refId: 'A',
meta: {
rawQuery:
'aggregation=Average&api-version=2018-01-01&interval=PT1M' +
'&metricnames=Percentage+CPU&timespan=2019-05-19T15%3A11%3A37Z%2F2019-05-19T21%3A11%3A37Z',
unit: 'Percent',
},
],
};
beforeEach(() => {
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
expect(options.url).toContain(
'/testRG/providers/Microsoft.Compute/virtualMachines/testRN/providers/microsoft.insights/metrics'
);
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then(results => {
expect(results.data.length).toBe(1);
expect(results.data[0].target).toEqual('testRN.Percentage CPU');
expect(results.data[0].datapoints[0][1]).toEqual(1503435600000);
expect(results.data[0].datapoints[0][0]).toEqual(1.0503333333333331);
expect(results.data[0].datapoints[2][1]).toEqual(1503442800000);
expect(results.data[0].datapoints[2][0]).toEqual(1.0457499999999995);
});
});
});
describe('and data field is total', () => {
const response = {
value: [
{
timeseries: [
{
data: [
{
timeStamp: '2017-08-22T21:00:00Z',
total: 1.0503333333333331,
},
{
timeStamp: '2017-08-22T22:00:00Z',
total: 1.045083333333333,
},
{
timeStamp: '2017-08-22T23:00:00Z',
total: 1.0457499999999995,
},
],
},
],
id:
'/subscriptions/xxx/resourceGroups/testRG/providers/Microsoft.Compute/virtualMachines' +
'/testRN/providers/Microsoft.Insights/metrics/Percentage CPU',
name: {
value: 'Percentage CPU',
localizedValue: 'Percentage CPU',
series: [
{
name: 'Percentage CPU',
points: [[2.2075, 1558278660000], [2.29, 1558278720000]],
},
type: 'Microsoft.Insights/metrics',
unit: 'Percent',
},
],
};
beforeEach(() => {
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
expect(options.url).toContain(
'/testRG/providers/Microsoft.Compute/virtualMachines/testRN/providers/microsoft.insights/metrics'
);
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then(results => {
expect(results.data.length).toBe(1);
expect(results.data[0].target).toEqual('testRN.Percentage CPU');
expect(results.data[0].datapoints[0][1]).toEqual(1503435600000);
expect(results.data[0].datapoints[0][0]).toEqual(1.0503333333333331);
expect(results.data[0].datapoints[2][1]).toEqual(1503442800000);
expect(results.data[0].datapoints[2][0]).toEqual(1.0457499999999995);
});
});
});
],
tables: null,
},
},
};
describe('and data has a dimension filter', () => {
const response = {
value: [
{
timeseries: [
{
data: [
{
timeStamp: '2017-08-22T21:00:00Z',
total: 1.0503333333333331,
},
{
timeStamp: '2017-08-22T22:00:00Z',
total: 1.045083333333333,
},
{
timeStamp: '2017-08-22T23:00:00Z',
total: 1.0457499999999995,
},
],
metadatavalues: [
{
name: {
value: 'blobtype',
localizedValue: 'blobtype',
},
value: 'BlockBlob',
},
],
},
],
id:
'/subscriptions/xxx/resourceGroups/testRG/providers/Microsoft.Compute/virtualMachines' +
'/testRN/providers/Microsoft.Insights/metrics/Percentage CPU',
name: {
value: 'Percentage CPU',
localizedValue: 'Percentage CPU',
},
type: 'Microsoft.Insights/metrics',
unit: 'Percent',
},
],
beforeEach(() => {
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
expect(options.url).toContain('/api/tsdb/query');
return ctx.$q.when({ data: response, status: 200 });
};
});
describe('and with no alias specified', () => {
beforeEach(() => {
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
const expected =
'/testRG/providers/Microsoft.Compute/virtualMachines/testRN/providers/microsoft.insights/metrics';
expect(options.url).toContain(expected);
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then(results => {
expect(results.data.length).toBe(1);
expect(results.data[0].target).toEqual('testRN{blobtype=BlockBlob}.Percentage CPU');
expect(results.data[0].datapoints[0][1]).toEqual(1503435600000);
expect(results.data[0].datapoints[0][0]).toEqual(1.0503333333333331);
expect(results.data[0].datapoints[2][1]).toEqual(1503442800000);
expect(results.data[0].datapoints[2][0]).toEqual(1.0457499999999995);
});
});
});
describe('and with an alias specified', () => {
beforeEach(() => {
options.targets[0].azureMonitor.alias =
'{{resourcegroup}} + {{namespace}} + {{resourcename}} + ' +
'{{metric}} + {{dimensionname}} + {{dimensionvalue}}';
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
const expected =
'/testRG/providers/Microsoft.Compute/virtualMachines/testRN/providers/microsoft.insights/metrics';
expect(options.url).toContain(expected);
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then(results => {
expect(results.data.length).toBe(1);
const expected =
'testRG + Microsoft.Compute/virtualMachines + testRN + Percentage CPU + blobtype + BlockBlob';
expect(results.data[0].target).toEqual(expected);
expect(results.data[0].datapoints[0][1]).toEqual(1503435600000);
expect(results.data[0].datapoints[0][0]).toEqual(1.0503333333333331);
expect(results.data[0].datapoints[2][1]).toEqual(1503442800000);
expect(results.data[0].datapoints[2][0]).toEqual(1.0457499999999995);
});
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then(results => {
expect(results.data.length).toBe(1);
expect(results.data[0].name).toEqual('Percentage CPU');
expect(results.data[0].rows[0][1]).toEqual(1558278660000);
expect(results.data[0].rows[0][0]).toEqual(2.2075);
expect(results.data[0].rows[1][1]).toEqual(1558278720000);
expect(results.data[0].rows[1][0]).toEqual(2.29);
});
});
});
......
import _ from 'lodash';
import AzureMonitorFilterBuilder from './azure_monitor_filter_builder';
import UrlBuilder from './url_builder';
import ResponseParser from './response_parser';
import SupportedNamespaces from './supported_namespaces';
import TimegrainConverter from '../time_grain_converter';
import { AzureMonitorQuery, AzureDataSourceJsonData } from '../types';
import { DataQueryRequest, DataSourceInstanceSettings } from '@grafana/ui/src/types';
import {
AzureMonitorQuery,
AzureDataSourceJsonData,
AzureMonitorMetricDefinitionsResponse,
AzureMonitorResourceGroupsResponse,
} from '../types';
import {
DataQueryRequest,
DataQueryResponseData,
DataSourceInstanceSettings,
TimeSeries,
toDataFrame,
} from '@grafana/ui';
import { BackendSrv } from 'app/core/services/backend_srv';
import { TemplateSrv } from 'app/features/templating/template_srv';
......@@ -19,7 +29,7 @@ export default class AzureMonitorDatasource {
url: string;
defaultDropdownValue = 'select';
cloudName: string;
supportedMetricNamespaces: any[] = [];
supportedMetricNamespaces: string[] = [];
/** @ngInject */
constructor(
......@@ -40,7 +50,7 @@ export default class AzureMonitorDatasource {
return !!this.subscriptionId && this.subscriptionId.length > 0;
}
async query(options: DataQueryRequest<AzureMonitorQuery>) {
async query(options: DataQueryRequest<AzureMonitorQuery>): Promise<DataQueryResponseData[]> {
const queries = _.filter(options.targets, item => {
return (
item.hide !== true &&
......@@ -56,6 +66,7 @@ export default class AzureMonitorDatasource {
}).map(target => {
const item = target.azureMonitor;
// fix for timeGrainUnit which is a deprecated/removed field name
if (item.timeGrainUnit && item.timeGrain !== 'auto') {
item.timeGrain = TimegrainConverter.createISO8601Duration(item.timeGrain, item.timeGrainUnit);
}
......@@ -65,78 +76,66 @@ export default class AzureMonitorDatasource {
const resourceName = this.templateSrv.replace(item.resourceName, options.scopedVars);
const metricDefinition = this.templateSrv.replace(item.metricDefinition, options.scopedVars);
const timeGrain = this.templateSrv.replace((item.timeGrain || '').toString(), options.scopedVars);
const filterBuilder = new AzureMonitorFilterBuilder(
item.metricName,
options.range.from,
options.range.to,
timeGrain,
options.interval
);
if (item.timeGrains) {
filterBuilder.setAllowedTimeGrains(item.timeGrains);
}
if (item.aggregation) {
filterBuilder.setAggregation(item.aggregation);
}
if (item.dimension && item.dimension !== 'None') {
filterBuilder.setDimensionFilter(item.dimension, item.dimensionFilter);
}
const filter = this.templateSrv.replace(filterBuilder.generateFilter(), options.scopedVars);
const url = UrlBuilder.buildAzureMonitorQueryUrl(
this.baseUrl,
subscriptionId,
resourceGroup,
metricDefinition,
resourceName,
this.apiVersion,
filter
);
const aggregation = this.templateSrv.replace(item.aggregation, options.scopedVars);
return {
refId: target.refId,
intervalMs: options.intervalMs,
maxDataPoints: options.maxDataPoints,
datasourceId: this.id,
url: url,
format: target.format,
alias: item.alias,
subscription: subscriptionId,
queryType: 'Azure Monitor',
type: 'timeSeriesQuery',
raw: false,
azureMonitor: {
resourceGroup: resourceGroup,
resourceName: resourceName,
metricDefinition: metricDefinition,
timeGrain: timeGrain,
allowedTimeGrainsMs: item.allowedTimeGrainsMs,
metricName: this.templateSrv.replace(item.metricName, options.scopedVars),
aggregation: aggregation,
dimension: this.templateSrv.replace(item.dimension, options.scopedVars),
dimensionFilter: this.templateSrv.replace(item.dimensionFilter, options.scopedVars),
alias: item.alias,
format: target.format,
},
};
});
if (!queries || queries.length === 0) {
return [];
return Promise.resolve([]);
}
const promises = this.doQueries(queries);
return Promise.all(promises).then(results => {
return new ResponseParser(results).parseQueryResult();
const { data } = await this.backendSrv.datasourceRequest({
url: '/api/tsdb/query',
method: 'POST',
data: {
from: options.range.from.valueOf().toString(),
to: options.range.to.valueOf().toString(),
queries,
},
});
}
doQueries(queries) {
return _.map(queries, query => {
return this.doRequest(query.url)
.then(result => {
return {
result: result,
query: query,
};
})
.catch(err => {
throw {
error: err,
query: query,
const result: DataQueryResponseData[] = [];
if (data.results) {
Object['values'](data.results).forEach((queryRes: any) => {
if (!queryRes.series) {
return;
}
queryRes.series.forEach((series: any) => {
const timeSerie: TimeSeries = {
target: series.name,
datapoints: series.points,
refId: queryRes.refId,
meta: queryRes.meta,
};
result.push(toDataFrame(timeSerie));
});
});
});
return result;
}
return Promise.resolve([]);
}
annotationQuery(options) {}
......@@ -217,14 +216,14 @@ export default class AzureMonitorDatasource {
getSubscriptions(route?: string) {
const url = `/${route || this.cloudName}/subscriptions?api-version=2019-03-01`;
return this.doRequest(url).then(result => {
return this.doRequest(url).then((result: any) => {
return ResponseParser.parseSubscriptions(result);
});
}
getResourceGroups(subscriptionId: string) {
const url = `${this.baseUrl}/${subscriptionId}/resourceGroups?api-version=${this.apiVersion}`;
return this.doRequest(url).then(result => {
return this.doRequest(url).then((result: AzureMonitorResourceGroupsResponse) => {
return ResponseParser.parseResponseValues(result, 'name', 'name');
});
}
......@@ -234,7 +233,7 @@ export default class AzureMonitorDatasource {
this.apiVersion
}`;
return this.doRequest(url)
.then(result => {
.then((result: AzureMonitorMetricDefinitionsResponse) => {
return ResponseParser.parseResponseValues(result, 'type', 'type');
})
.then(result => {
......
jest.mock('app/core/utils/kbn', () => {
return {
interval_to_ms: interval => {
if (interval.substring(interval.length - 1) === 's') {
return interval.substring(0, interval.length - 1) * 1000;
}
if (interval.substring(interval.length - 1) === 'm') {
return interval.substring(0, interval.length - 1) * 1000 * 60;
}
if (interval.substring(interval.length - 1) === 'd') {
return interval.substring(0, interval.length - 1) * 1000 * 60 * 24;
}
return undefined;
},
};
});
import AzureMonitorFilterBuilder from './azure_monitor_filter_builder';
import { toUtc } from '@grafana/ui/src/utils/moment_wrapper';
describe('AzureMonitorFilterBuilder', () => {
let builder: AzureMonitorFilterBuilder;
const timefilter = 'timespan=2017-08-22T06:00:00Z/2017-08-22T07:00:00Z';
const metricFilter = 'metricnames=Percentage CPU';
beforeEach(() => {
builder = new AzureMonitorFilterBuilder(
'Percentage CPU',
toUtc('2017-08-22 06:00'),
toUtc('2017-08-22 07:00'),
'PT1H',
'3m'
);
});
describe('with a metric name and auto time grain of 3 minutes', () => {
beforeEach(() => {
builder.timeGrain = 'auto';
});
it('should always add datetime filtering and a time grain rounded to the closest allowed value to the filter', () => {
const filter = timefilter + '&interval=PT5M&' + metricFilter;
expect(builder.generateFilter()).toEqual(filter);
});
});
describe('with a metric name and auto time grain of 30 seconds', () => {
beforeEach(() => {
builder.timeGrain = 'auto';
builder.grafanaInterval = '30s';
});
it('should always add datetime filtering and a time grain in ISO_8601 format to the filter', () => {
const filter = timefilter + '&interval=PT1M&' + metricFilter;
expect(builder.generateFilter()).toEqual(filter);
});
});
describe('with a metric name and auto time grain of 10 minutes', () => {
beforeEach(() => {
builder.timeGrain = 'auto';
builder.grafanaInterval = '10m';
});
it('should always add datetime filtering and a time grain rounded to the closest allowed value to the filter', () => {
const filter = timefilter + '&interval=PT15M&' + metricFilter;
expect(builder.generateFilter()).toEqual(filter);
});
});
describe('with a metric name and auto time grain of 2 day', () => {
beforeEach(() => {
builder.timeGrain = 'auto';
builder.grafanaInterval = '2d';
});
it('should always add datetime filtering and a time grain rounded to the closest allowed value to the filter', () => {
const filter = timefilter + '&interval=P1D&' + metricFilter;
expect(builder.generateFilter()).toEqual(filter);
});
});
describe('with a metric name and 1 hour time grain', () => {
it('should always add datetime filtering and a time grain in ISO_8601 format to the filter', () => {
const filter = timefilter + '&interval=PT1H&' + metricFilter;
expect(builder.generateFilter()).toEqual(filter);
});
});
describe('with a metric name and 1 minute time grain', () => {
beforeEach(() => {
builder.timeGrain = 'PT1M';
});
it('should always add datetime filtering and a time grain in ISO_8601 format to the filter', () => {
const filter = timefilter + '&interval=PT1M&' + metricFilter;
expect(builder.generateFilter()).toEqual(filter);
});
});
describe('with a metric name and 1 day time grain and an aggregation', () => {
beforeEach(() => {
builder.timeGrain = 'P1D';
builder.setAggregation('Maximum');
});
it('should add time grain to the filter in ISO_8601 format', () => {
const filter = timefilter + '&interval=P1D&aggregation=Maximum&' + metricFilter;
expect(builder.generateFilter()).toEqual(filter);
});
});
describe('with a metric name and 1 day time grain and an aggregation and a dimension', () => {
beforeEach(() => {
builder.setDimensionFilter('aDimension', 'aFilterValue');
});
it('should add dimension to the filter', () => {
const filter = timefilter + '&interval=PT1H&' + metricFilter + `&$filter=aDimension eq 'aFilterValue'`;
expect(builder.generateFilter()).toEqual(filter);
});
});
});
import TimegrainConverter from '../time_grain_converter';
export default class AzureMonitorFilterBuilder {
aggregation: string;
timeGrainInterval = '';
dimension: string;
dimensionFilter: string;
allowedTimeGrains = ['1m', '5m', '15m', '30m', '1h', '6h', '12h', '1d'];
constructor(
private metricName: string,
private from,
private to,
public timeGrain: string,
public grafanaInterval: string
) {}
setAllowedTimeGrains(timeGrains) {
this.allowedTimeGrains = [];
timeGrains.forEach(tg => {
if (tg.value === 'auto') {
this.allowedTimeGrains.push(tg.value);
} else {
this.allowedTimeGrains.push(TimegrainConverter.createKbnUnitFromISO8601Duration(tg.value));
}
});
}
setAggregation(agg) {
this.aggregation = agg;
}
setDimensionFilter(dimension, dimensionFilter) {
this.dimension = dimension;
this.dimensionFilter = dimensionFilter;
}
generateFilter() {
let filter = this.createDatetimeAndTimeGrainConditions();
if (this.aggregation) {
filter += `&aggregation=${this.aggregation}`;
}
if (this.metricName && this.metricName.trim().length > 0) {
filter += `&metricnames=${this.metricName}`;
}
if (this.dimension && this.dimensionFilter && this.dimensionFilter.trim().length > 0) {
filter += `&$filter=${this.dimension} eq '${this.dimensionFilter}'`;
}
return filter;
}
createDatetimeAndTimeGrainConditions() {
const dateTimeCondition = `timespan=${this.from.utc().format()}/${this.to.utc().format()}`;
if (this.timeGrain === 'auto') {
this.timeGrain = this.calculateAutoTimeGrain();
}
const timeGrainCondition = `&interval=${this.timeGrain}`;
return dateTimeCondition + timeGrainCondition;
}
calculateAutoTimeGrain() {
const roundedInterval = TimegrainConverter.findClosestTimeGrain(this.grafanaInterval, this.allowedTimeGrains);
return TimegrainConverter.createISO8601DurationFromInterval(roundedInterval);
}
}
import _ from 'lodash';
import TimeGrainConverter from '../time_grain_converter';
import { dateTime } from '@grafana/ui/src/utils/moment_wrapper';
export default class ResponseParser {
constructor(private results) {}
parseQueryResult() {
const data: any[] = [];
for (let i = 0; i < this.results.length; i++) {
for (let j = 0; j < this.results[i].result.data.value.length; j++) {
for (let k = 0; k < this.results[i].result.data.value[j].timeseries.length; k++) {
const alias = this.results[i].query.alias;
data.push({
target: ResponseParser.createTarget(
this.results[i].result.data.value[j],
this.results[i].result.data.value[j].timeseries[k].metadatavalues,
alias
),
datapoints: ResponseParser.convertDataToPoints(this.results[i].result.data.value[j].timeseries[k].data),
});
}
}
}
return data;
}
static createTarget(data, metadatavalues, alias: string) {
const resourceGroup = ResponseParser.parseResourceGroupFromId(data.id);
const resourceName = ResponseParser.parseResourceNameFromId(data.id);
const namespace = ResponseParser.parseNamespaceFromId(data.id, resourceName);
if (alias) {
const regex = /\{\{([\s\S]+?)\}\}/g;
return alias.replace(regex, (match, g1, g2) => {
const group = g1 || g2;
if (group === 'resourcegroup') {
return resourceGroup;
} else if (group === 'namespace') {
return namespace;
} else if (group === 'resourcename') {
return resourceName;
} else if (group === 'metric') {
return data.name.value;
} else if (group === 'dimensionname') {
return metadatavalues && metadatavalues.length > 0 ? metadatavalues[0].name.value : '';
} else if (group === 'dimensionvalue') {
return metadatavalues && metadatavalues.length > 0 ? metadatavalues[0].value : '';
}
return match;
});
}
if (metadatavalues && metadatavalues.length > 0) {
return `${resourceName}{${metadatavalues[0].name.value}=${metadatavalues[0].value}}.${data.name.value}`;
}
return `${resourceName}.${data.name.value}`;
}
static parseResourceGroupFromId(id: string) {
const startIndex = id.indexOf('/resourceGroups/') + 16;
const endIndex = id.indexOf('/providers');
return id.substring(startIndex, endIndex);
}
static parseNamespaceFromId(id: string, resourceName: string) {
const startIndex = id.indexOf('/providers/') + 11;
const endIndex = id.indexOf('/' + resourceName);
return id.substring(startIndex, endIndex);
}
static parseResourceNameFromId(id: string) {
const endIndex = id.lastIndexOf('/providers');
const startIndex = id.slice(0, endIndex).lastIndexOf('/') + 1;
return id.substring(startIndex, endIndex);
}
static convertDataToPoints(timeDataFrame) {
const dataPoints: any[] = [];
for (let k = 0; k < timeDataFrame.length; k++) {
const epoch = ResponseParser.dateTimeToEpoch(timeDataFrame[k].timeStamp);
const aggKey = ResponseParser.getKeyForAggregationField(timeDataFrame[k]);
if (aggKey) {
dataPoints.push([timeDataFrame[k][aggKey], epoch]);
}
}
return dataPoints;
}
static dateTimeToEpoch(dateTimeValue) {
return dateTime(dateTimeValue).valueOf();
}
static parseResponseValues(
result: any,
textFieldName: string,
valueFieldName: string
): Array<{ text: string; value: string }> {
const list: Array<{ text: string; value: string }> = [];
static getKeyForAggregationField(dataObj): string {
const keys = _.keys(dataObj);
if (keys.length < 2) {
return '';
if (!result) {
return list;
}
return _.intersection(keys, ['total', 'average', 'maximum', 'minimum', 'count'])[0];
}
static parseResponseValues(result: any, textFieldName: string, valueFieldName: string) {
const list: any[] = [];
for (let i = 0; i < result.data.value.length; i++) {
if (!_.find(list, ['value', _.get(result.data.value[i], valueFieldName)])) {
list.push({
......@@ -121,8 +23,13 @@ export default class ResponseParser {
return list;
}
static parseResourceNames(result: any, metricDefinition: string) {
const list: any[] = [];
static parseResourceNames(result: any, metricDefinition: string): Array<{ text: string; value: string }> {
const list: Array<{ text: string; value: string }> = [];
if (!result) {
return list;
}
for (let i = 0; i < result.data.value.length; i++) {
if (result.data.value[i].type === metricDefinition) {
list.push({
......@@ -136,12 +43,21 @@ export default class ResponseParser {
}
static parseMetadata(result: any, metricName: string) {
const defaultAggTypes = ['None', 'Average', 'Minimum', 'Maximum', 'Total', 'Count'];
if (!result) {
return {
primaryAggType: '',
supportedAggTypes: defaultAggTypes,
supportedTimeGrains: [],
dimensions: [],
};
}
const metricData: any = _.find(result.data.value, o => {
return _.get(o, 'name.value') === metricName;
});
const defaultAggTypes = ['None', 'Average', 'Minimum', 'Maximum', 'Total', 'Count'];
return {
primaryAggType: metricData.primaryAggregationType,
supportedAggTypes: metricData.supportedAggregationTypes || defaultAggTypes,
......@@ -150,8 +66,12 @@ export default class ResponseParser {
};
}
static parseTimeGrains(metricAvailabilities) {
static parseTimeGrains(metricAvailabilities: any[]): Array<{ text: string; value: string }> {
const timeGrains: any[] = [];
if (!metricAvailabilities) {
return timeGrains;
}
metricAvailabilities.forEach(avail => {
if (avail.timeGrain) {
timeGrains.push({
......@@ -163,8 +83,8 @@ export default class ResponseParser {
return timeGrains;
}
static parseDimensions(metricData: any) {
const dimensions: any[] = [];
static parseDimensions(metricData: any): Array<{ text: string; value: string }> {
const dimensions: Array<{ text: string; value: string }> = [];
if (!metricData.dimensions || metricData.dimensions.length === 0) {
return dimensions;
}
......@@ -182,10 +102,15 @@ export default class ResponseParser {
return dimensions;
}
static parseSubscriptions(result: any) {
static parseSubscriptions(result: any): Array<{ text: string; value: string }> {
const list: Array<{ text: string; value: string }> = [];
if (!result) {
return list;
}
const valueFieldName = 'subscriptionId';
const textFieldName = 'displayName';
const list: Array<{ text: string; value: string }> = [];
for (let i = 0; i < result.data.value.length; i++) {
if (!_.find(list, ['value', _.get(result.data.value[i], valueFieldName)])) {
list.push({
......
......@@ -235,7 +235,7 @@ export default class SupportedNamespaces {
constructor(private cloudName: string) {}
get() {
get(): string[] {
return this.supportedMetricNamespaces[this.cloudName];
}
}
......@@ -52,24 +52,6 @@ describe('AzureMonitorUrlBuilder', () => {
});
});
describe('when metric definition is Microsoft.Storage/storageAccounts/blobServices', () => {
it('should build the query url in the longer format', () => {
const url = UrlBuilder.buildAzureMonitorQueryUrl(
'',
'sub1',
'rg',
'Microsoft.Storage/storageAccounts/blobServices',
'rn1/default',
'2017-05-01-preview',
'metricnames=aMetric'
);
expect(url).toBe(
'/sub1/resourceGroups/rg/providers/Microsoft.Storage/storageAccounts/rn1/blobServices/default/' +
'providers/microsoft.insights/metrics?api-version=2017-05-01-preview&metricnames=aMetric'
);
});
});
describe('when metric definition is Microsoft.Storage/storageAccounts/fileServices', () => {
it('should build the getMetricNames url in the longer format', () => {
const url = UrlBuilder.buildAzureMonitorGetMetricNamesUrl(
......@@ -87,24 +69,6 @@ describe('AzureMonitorUrlBuilder', () => {
});
});
describe('when metric definition is Microsoft.Storage/storageAccounts/fileServices', () => {
it('should build the query url in the longer format', () => {
const url = UrlBuilder.buildAzureMonitorQueryUrl(
'',
'sub1',
'rg',
'Microsoft.Storage/storageAccounts/fileServices',
'rn1/default',
'2017-05-01-preview',
'metricnames=aMetric'
);
expect(url).toBe(
'/sub1/resourceGroups/rg/providers/Microsoft.Storage/storageAccounts/rn1/fileServices/default/' +
'providers/microsoft.insights/metrics?api-version=2017-05-01-preview&metricnames=aMetric'
);
});
});
describe('when metric definition is Microsoft.Storage/storageAccounts/tableServices', () => {
it('should build the getMetricNames url in the longer format', () => {
const url = UrlBuilder.buildAzureMonitorGetMetricNamesUrl(
......@@ -122,24 +86,6 @@ describe('AzureMonitorUrlBuilder', () => {
});
});
describe('when metric definition is Microsoft.Storage/storageAccounts/tableServices', () => {
it('should build the query url in the longer format', () => {
const url = UrlBuilder.buildAzureMonitorQueryUrl(
'',
'sub1',
'rg',
'Microsoft.Storage/storageAccounts/tableServices',
'rn1/default',
'2017-05-01-preview',
'metricnames=aMetric'
);
expect(url).toBe(
'/sub1/resourceGroups/rg/providers/Microsoft.Storage/storageAccounts/rn1/tableServices/default/' +
'providers/microsoft.insights/metrics?api-version=2017-05-01-preview&metricnames=aMetric'
);
});
});
describe('when metric definition is Microsoft.Storage/storageAccounts/queueServices', () => {
it('should build the getMetricNames url in the longer format', () => {
const url = UrlBuilder.buildAzureMonitorGetMetricNamesUrl(
......@@ -156,22 +102,4 @@ describe('AzureMonitorUrlBuilder', () => {
);
});
});
describe('when metric definition is Microsoft.Storage/storageAccounts/queueServices', () => {
it('should build the query url in the longer format', () => {
const url = UrlBuilder.buildAzureMonitorQueryUrl(
'',
'sub1',
'rg',
'Microsoft.Storage/storageAccounts/queueServices',
'rn1/default',
'2017-05-01-preview',
'metricnames=aMetric'
);
expect(url).toBe(
'/sub1/resourceGroups/rg/providers/Microsoft.Storage/storageAccounts/rn1/queueServices/default/' +
'providers/microsoft.insights/metrics?api-version=2017-05-01-preview&metricnames=aMetric'
);
});
});
});
export default class UrlBuilder {
static buildAzureMonitorQueryUrl(
baseUrl: string,
subscriptionId: string,
resourceGroup: string,
metricDefinition: string,
resourceName: string,
apiVersion: string,
filter: string
) {
if ((metricDefinition.match(/\//g) || []).length > 1) {
const rn = resourceName.split('/');
const service = metricDefinition.substring(metricDefinition.lastIndexOf('/') + 1);
const md = metricDefinition.substring(0, metricDefinition.lastIndexOf('/'));
return (
`${baseUrl}/${subscriptionId}/resourceGroups/${resourceGroup}/providers/${md}/${rn[0]}/${service}/${rn[1]}` +
`/providers/microsoft.insights/metrics?api-version=${apiVersion}&${filter}`
);
}
return (
`${baseUrl}/${subscriptionId}/resourceGroups/${resourceGroup}/providers/${metricDefinition}/${resourceName}` +
`/providers/microsoft.insights/metrics?api-version=${apiVersion}&${filter}`
);
}
static buildAzureMonitorGetMetricNamesUrl(
baseUrl: string,
subscriptionId: string,
......
......@@ -3,6 +3,7 @@ import { QueryCtrl } from 'app/plugins/sdk';
// import './css/query_editor.css';
import TimegrainConverter from './time_grain_converter';
import './editor/editor_component';
import kbn from 'app/core/utils/kbn';
import { TemplateSrv } from 'app/features/templating/template_srv';
import { auto } from 'angular';
......@@ -30,7 +31,8 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
dimensionFilter: string;
timeGrain: string;
timeGrainUnit: string;
timeGrains: any[];
timeGrains: Array<{ text: string; value: string }>;
allowedTimeGrainsMs: number[];
dimensions: any[];
dimension: any;
aggregation: string;
......@@ -175,6 +177,14 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
delete this.target.azureMonitor.timeGrainUnit;
this.onMetricNameChange();
}
if (
this.target.azureMonitor.timeGrains &&
this.target.azureMonitor.timeGrains.length > 0 &&
(!this.target.azureMonitor.allowedTimeGrainsMs || this.target.azureMonitor.allowedTimeGrainsMs.length === 0)
) {
this.target.azureMonitor.allowedTimeGrainsMs = this.convertTimeGrainsToMs(this.target.azureMonitor.timeGrains);
}
}
migrateToFromTimes() {
......@@ -312,6 +322,7 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
this.target.azureMonitor.timeGrain = '';
this.target.azureMonitor.dimensions = [];
this.target.azureMonitor.dimension = '';
this.refresh();
}
onMetricDefinitionChange() {
......@@ -331,6 +342,7 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
this.target.azureMonitor.timeGrain = '';
this.target.azureMonitor.dimensions = [];
this.target.azureMonitor.dimension = '';
this.refresh();
}
onMetricNameChange() {
......@@ -352,6 +364,8 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
this.target.azureMonitor.timeGrains = [{ text: 'auto', value: 'auto' }].concat(metadata.supportedTimeGrains);
this.target.azureMonitor.timeGrain = 'auto';
this.target.azureMonitor.allowedTimeGrainsMs = this.convertTimeGrainsToMs(metadata.supportedTimeGrains || []);
this.target.azureMonitor.dimensions = metadata.dimensions;
if (metadata.dimensions.length > 0) {
this.target.azureMonitor.dimension = metadata.dimensions[0].value;
......@@ -361,6 +375,16 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
.catch(this.handleQueryCtrlError.bind(this));
}
convertTimeGrainsToMs(timeGrains: Array<{ text: string; value: string }>) {
const allowedTimeGrainsMs: number[] = [];
timeGrains.forEach((tg: any) => {
if (tg.value !== 'auto') {
allowedTimeGrainsMs.push(kbn.interval_to_ms(TimegrainConverter.createKbnUnitFromISO8601Duration(tg.value)));
}
});
return allowedTimeGrainsMs;
}
getAutoInterval() {
if (this.target.azureMonitor.timeGrain === 'auto') {
return TimegrainConverter.findClosestTimeGrain(
......
......@@ -35,6 +35,7 @@ export interface AzureMetricQuery {
timeGrainUnit: string;
timeGrain: string;
timeGrains: string[];
allowedTimeGrainsMs: number[];
aggregation: string;
dimension: string;
dimensionFilter: string;
......@@ -47,6 +48,24 @@ export interface AzureLogsQuery {
workspace: string;
}
// Azure Monitor API Types
export interface AzureMonitorMetricDefinitionsResponse {
data: {
value: Array<{ name: string; type: string; location?: string }>;
};
status: number;
statusText: string;
}
export interface AzureMonitorResourceGroupsResponse {
data: {
value: Array<{ name: string }>;
};
status: number;
statusText: string;
}
// Azure Log Analytics types
export interface KustoSchema {
Databases: { [key: string]: KustoDatabase };
......
......@@ -3,7 +3,7 @@
echo -e "Collecting code stats (typescript errors & more)"
ERROR_COUNT_LIMIT=3000
ERROR_COUNT_LIMIT=2945
DIRECTIVES_LIMIT=172
CONTROLLERS_LIMIT=139
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment