Commit aaab636b by Ryan McKinley Committed by GitHub

Plugins: verify manifest signature (#23519)

* try decode

* vendor crypto deps

* commited missing vendor deps

* Theme: Refactoring theme colors variables  (#23513)

* Theme: Typography updates

* Updated

* Updated snapshot

* Renamed colors to palette

* Introduce colors namespace

* Massive theme color move

* Removing color selection logic with more abstract concepts

* Updates

* Minor sidemenu change

* Fix example jaeger agent port in docs (#23514)

* @grafana/ui: Replace various icons using Icon component (#23442)

* Replace icons in dashboard and settings

* Replace icons in alerting

* Update batch of icons

* Implement icons accross various files

* Style updates

* Search: Fix recent and starred icons

* Update styling and details

* Replace new icon created by unicons

* Fix e2e test, styling

* Minor styling updates

Co-authored-by: Clarity-89 <homes89@ukr.net>

* trying with p512 key

* trying with p512 key

* lint

* update with real signatures

* fixes spacing in test files

* remove convey from test

* use errutil to wrap errors

* removes print statement

* splitt tests into two run statements

* unexport plugin manifest struct

Co-authored-by: bergquist <carl.bergquist@gmail.com>
Co-authored-by: Torkel Ödegaard <torkel@grafana.com>
Co-authored-by: Vitaly Zhuravlev <v-zhuravlev@users.noreply.github.com>
Co-authored-by: Ivana Huckova <30407135+ivanahuckova@users.noreply.github.com>
Co-authored-by: Clarity-89 <homes89@ukr.net>
parent 61460ea3
......@@ -69,7 +69,7 @@ require (
github.com/yudai/golcs v0.0.0-20170316035057-ecda9a501e82 // indirect
github.com/yudai/pp v2.0.1+incompatible // indirect
go.uber.org/atomic v1.5.1 // indirect
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550
golang.org/x/crypto v0.0.0-20200406173513-056763e48d71
golang.org/x/lint v0.0.0-20191125180803-fdd1cda4f05f // indirect
golang.org/x/net v0.0.0-20190923162816-aa69164e4478
golang.org/x/oauth2 v0.0.0-20190604053449-0f29369cfe45
......
......@@ -330,6 +330,8 @@ golang.org/x/crypto v0.0.0-20190701094942-4def268fd1a4/go.mod h1:yigFU9vqHzYiE8U
golang.org/x/crypto v0.0.0-20190923035154-9ee001bba392/go.mod h1:/lpIB1dKB+9EgE3H3cr1v9wB50oz8l4C4h62xy7jSTY=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550 h1:ObdrDkeb4kJdCP557AjRjq69pTHfNouLtWZG7j9rPN8=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200406173513-056763e48d71 h1:DOmugCavvUtnUD114C1Wh+UgTgQZ4pMLzXxi1pSt+/Y=
golang.org/x/crypto v0.0.0-20200406173513-056763e48d71/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/image v0.0.0-20190507092727-e4e5bf290fec/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
......
package plugins
import (
"bytes"
"crypto/sha256"
"fmt"
"encoding/json"
"errors"
"io"
"io/ioutil"
"os"
"path"
"github.com/grafana/grafana/pkg/util/errutil"
"golang.org/x/crypto/openpgp"
"golang.org/x/crypto/openpgp/clearsign"
)
// Soon we can fetch keys from:
......@@ -15,21 +22,28 @@ var publicKeyText = `-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js v4.10.1
Comment: https://openpgpjs.org
xjMEXo5V+RYJKwYBBAHaRw8BAQdAxIzDC0767A5eOHESiU8ACz5c9BWIrkbJ
/5a4m/zsFWnNG0pvbiBTbWl0aCA8am9uQGV4YW1wbGUuY29tPsJ4BBAWCgAg
BQJejlX5BgsJBwgDAgQVCAoCBBYCAQACGQECGwMCHgEACgkQ1uNw7xqtn452
hQD+LK/+1k5vdVVQDxRDyjN3+6Wiy/jK2wwH1JtHdnTUKKsA/iot3glN57wb
gaIQgQSZaE5E9tsIhGYhhNi8R743Oh4GzjgEXo5V+RIKKwYBBAGXVQEFAQEH
QCmdY+K50okUPp1NCFJxdje+Icr859fTwwRy9+hq+vUIAwEIB8JhBBgWCAAJ
BQJejlX5AhsMAAoJENbjcO8arZ+OpMwBAIcGCY1jMPo64h9G4MmFyPjL+wxn
U2YVAvfHQZnN+gD3AP47klt0/0tmSlbNwEvimZxA3tpUfNrtUO1K4E8VxSIn
Dg==
=PA1c
xpMEXpTXXxMFK4EEACMEIwQBiOUQhvGbDLvndE0fEXaR0908wXzPGFpf0P0Z
HJ06tsq+0higIYHp7WTNJVEZtcwoYLcPRGaa9OQqbUU63BEyZdgAkPTz3RFd
5+TkDWZizDcaVFhzbDd500yTwexrpIrdInwC/jrgs7Zy/15h8KA59XXUkdmT
YB6TR+OA9RKME+dCJozNGUdyYWZhbmEgPGVuZ0BncmFmYW5hLmNvbT7CvAQQ
EwoAIAUCXpTXXwYLCQcIAwIEFQgKAgQWAgEAAhkBAhsDAh4BAAoJEH5NDGpw
iGbnaWoCCQGQ3SQnCkRWrG6XrMkXOKfDTX2ow9fuoErN46BeKmLM4f1EkDZQ
Tpq3SE8+My8B5BIH3SOcBeKzi3S57JHGBdFA+wIJAYWMrJNIvw8GeXne+oUo
NzzACdvfqXAZEp/HFMQhCKfEoWGJE8d2YmwY2+3GufVRTI5lQnZOHLE8L/Vc
1S5MXESjzpcEXpTXXxIFK4EEACMEIwQBtHX/SD5Qm3v4V92qpaIZQgtTX0sT
cFPjYWAHqsQ1iENrYN/vg1wU3ADlYATvydOQYvkTyT/tbDvx2Fse8PL84MQA
YKKQ6AJ3gLVvmeouZdU03YoV4MYaT8KbnJUkZQZkqdz2riOlySNI9CG3oYmv
omjUAtzgAgnCcurfGLZkkMxlmY8DAQoJwqQEGBMKAAkFAl6U118CGwwACgkQ
fk0ManCIZuc0jAIJAVw2xdLr4ZQqPUhubrUyFcqlWoW8dQoQagwO8s8ubmby
KuLA9FWJkfuuRQr+O9gHkDVCez3aism7zmJBqIOi38aNAgjJ3bo6leSS2jR/
x5NqiKVi83tiXDPncDQYPymOnMhW0l7CVA7wj75HrFvvlRI/4MArlbsZ2tBn
N1c5v9v/4h6qeA==
=DNbR
-----END PGP PUBLIC KEY BLOCK-----
`
// PluginManifest holds details for the file manifest
type PluginManifest struct {
// pluginManifest holds details for the file manifest
type pluginManifest struct {
Plugin string `json:"plugin"`
Version string `json:"version"`
KeyID string `json:"keyId"`
......@@ -39,36 +53,31 @@ type PluginManifest struct {
// readPluginManifest attempts to read and verify the plugin manifest
// if any error occurs or the manifest is not valid, this will return an error
func readPluginManifest(body []byte) (*PluginManifest, error) {
fmt.Printf("TODO... verify: %s", publicKeyText)
// block, _ := clearsign.Decode(body)
// if block == nil {
// return nil, fmt.Errorf("unable to decode manifest")
// }
// txt := string(block.Plaintext)
// fmt.Printf("PLAINTEXT: %s", txt)
// // Convert to a well typed object
// manifest := &PluginManifest{}
// err := json.Unmarshal(block.Plaintext, &manifest)
// if err != nil {
// return nil, fmt.Errorf("Error parsing manifest JSON: %s", err)
// }
// keyring, err := openpgp.ReadArmoredKeyRing(bytes.NewBufferString(publicKeyText))
// if err != nil {
// return nil, fmt.Errorf("failed to parse public key: %s", err)
// }
// if _, err := openpgp.CheckDetachedSignature(keyring,
// bytes.NewBuffer(block.Bytes),
// block.ArmoredSignature.Body); err != nil {
// return nil, fmt.Errorf("failed to check signature: %s", err)
// }
// return manifest, nil
return nil, fmt.Errorf("not yet parsing the manifest")
func readPluginManifest(body []byte) (*pluginManifest, error) {
block, _ := clearsign.Decode(body)
if block == nil {
return nil, errors.New("unable to decode manifest")
}
// Convert to a well typed object
manifest := &pluginManifest{}
err := json.Unmarshal(block.Plaintext, &manifest)
if err != nil {
return nil, errutil.Wrap("Error parsing manifest JSON", err)
}
keyring, err := openpgp.ReadArmoredKeyRing(bytes.NewBufferString(publicKeyText))
if err != nil {
return nil, errutil.Wrap("failed to parse public key", err)
}
if _, err := openpgp.CheckDetachedSignature(keyring,
bytes.NewBuffer(block.Bytes),
block.ArmoredSignature.Body); err != nil {
return nil, errutil.Wrap("failed to check signature", err)
}
return manifest, nil
}
// GetPluginSignatureState returns the signature state for a plugin
......
package plugins
import (
"strings"
"testing"
. "github.com/smartystreets/goconvey/convey"
"github.com/stretchr/testify/assert"
)
func TestManifestParsing(t *testing.T) {
Convey("Should validate manifest", t, func() {
txt := `
-----BEGIN PGP SIGNED MESSAGE-----
txt := `-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512
{
"plugin": "grafana-googlesheets-datasource",
"version": "1.0.0-dev",
"files": {
"LICENSE": "7df059597099bb7dcf25d2a9aedfaf4465f72d8d",
"README.md": "4ebed28a02dc029719296aa847bffcea8eb5b9ff",
"gfx_sheets_darwin_amd64": "4493f107eb175b085f020c1afea04614232dc0fd",
"gfx_sheets_linux_amd64": "d8b05884e3829d1389a9c0e4b79b0aba8c19ca4a",
"gfx_sheets_windows_amd64.exe": "88f33db20182e17c72c2823fe3bed87d8c45b0fd",
"img/config-page.png": "e6d8f6704dbe85d5f032d4e8ba44ebc5d4a68c43",
"img/dashboard.png": "63d79d0e0f9db21ea168324bd4e180d6892b9d2b",
"img/graph.png": "7ea6295954b24be55b27320af2074852fb088fa1",
"img/query-editor.png": "262f2bfddb004c7ce567042e8096f9e033c9b1bd",
"img/sheets.svg": "f134ab85caff88b59ea903c5491c6a08c221622f",
"module.js": "40b8c38cea260caed3cdc01d6e3c1eca483ab5c1",
"plugin.json": "bfcae42976f0feca58eed3636655bce51702d3ed"
"README.md": "08ec6d704b6115bef57710f6d7e866c050cb50ee",
"gfx_sheets_darwin_amd64": "1b8ae92c6e80e502bb0bf2d0ae9d7223805993ab",
"gfx_sheets_linux_amd64": "f39e0cc7344d3186b1052e6d356eecaf54d75b49",
"gfx_sheets_windows_amd64.exe": "c8825dfec512c1c235244f7998ee95182f9968de",
"module.js": "aaec6f51a995b7b843b843cd14041925274d960d",
"module.js.LICENSE.txt": "7f822fe9341af8f82ad1b0c69aba957822a377cf",
"module.js.map": "c5a524f5c4237f6ed6a016d43cd46938efeadb45",
"plugin.json": "55556b845e91935cc48fae3aa67baf0f22694c3f"
},
"plugin": "grafana-googlesheets-datasource",
"version": "1.2.3",
"keyId": "ABC",
"time": 1586404562862
"time": 1586817677115,
"keyId": "7e4d0c6a708866e7"
}
-----BEGIN PGP SIGNATURE-----
Version: OpenPGP.js v4.10.1
Comment: https://openpgpjs.org
wl4EARYKAAYFAl6OnNMACgkQ1uNw7xqtn45r0QEAqmoB/Q5NsJZNxnM69m2A
eQhcWNyo7yxO/4NZhVvBiJkA/iXUtptWbba3aw9TSZLn95LaUjKf4YUov29r
qX6kODEP
=YjQO
-----END PGP SIGNATURE-----
`
wqEEARMKAAYFAl6U6o0ACgkQfk0ManCIZuevWAIHSvcxOy1SvvL5gC+HpYyG
VbSsUvF2FsCoXUCTQflK6VdJfSPNzm8YdCdx7gNrBdly6HEs06ZaRp44F/ve
NR7DnB0CCQHO+4FlSPtXFTzNepoc+CytQyDAeOLMLmf2Tqhk2YShk+G/YlVX
74uuP5UXZxwK2YKJovdSknDIU7MhfuvvQIP/og==
=hBea
-----END PGP SIGNATURE-----`
t.Run("valid manifest", func(t *testing.T) {
manifest, err := readPluginManifest([]byte(txt))
// Always an error for now
So(err, ShouldNotBeNil)
So(manifest, ShouldBeNil)
assert.Nil(t, err)
assert.NotNil(t, manifest)
assert.Equal(t, manifest.Plugin, "grafana-googlesheets-datasource")
})
t.Run("invalid manifest", func(t *testing.T) {
modified := strings.ReplaceAll(txt, "README.md", "xxxxxxxxxx")
manifest, err := readPluginManifest([]byte(modified))
assert.NotNil(t, err)
assert.Nil(t, manifest)
})
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package armor implements OpenPGP ASCII Armor, see RFC 4880. OpenPGP Armor is
// very similar to PEM except that it has an additional CRC checksum.
package armor // import "golang.org/x/crypto/openpgp/armor"
import (
"bufio"
"bytes"
"encoding/base64"
"golang.org/x/crypto/openpgp/errors"
"io"
)
// A Block represents an OpenPGP armored structure.
//
// The encoded form is:
// -----BEGIN Type-----
// Headers
//
// base64-encoded Bytes
// '=' base64 encoded checksum
// -----END Type-----
// where Headers is a possibly empty sequence of Key: Value lines.
//
// Since the armored data can be very large, this package presents a streaming
// interface.
type Block struct {
Type string // The type, taken from the preamble (i.e. "PGP SIGNATURE").
Header map[string]string // Optional headers.
Body io.Reader // A Reader from which the contents can be read
lReader lineReader
oReader openpgpReader
}
var ArmorCorrupt error = errors.StructuralError("armor invalid")
const crc24Init = 0xb704ce
const crc24Poly = 0x1864cfb
const crc24Mask = 0xffffff
// crc24 calculates the OpenPGP checksum as specified in RFC 4880, section 6.1
func crc24(crc uint32, d []byte) uint32 {
for _, b := range d {
crc ^= uint32(b) << 16
for i := 0; i < 8; i++ {
crc <<= 1
if crc&0x1000000 != 0 {
crc ^= crc24Poly
}
}
}
return crc
}
var armorStart = []byte("-----BEGIN ")
var armorEnd = []byte("-----END ")
var armorEndOfLine = []byte("-----")
// lineReader wraps a line based reader. It watches for the end of an armor
// block and records the expected CRC value.
type lineReader struct {
in *bufio.Reader
buf []byte
eof bool
crc uint32
crcSet bool
}
func (l *lineReader) Read(p []byte) (n int, err error) {
if l.eof {
return 0, io.EOF
}
if len(l.buf) > 0 {
n = copy(p, l.buf)
l.buf = l.buf[n:]
return
}
line, isPrefix, err := l.in.ReadLine()
if err != nil {
return
}
if isPrefix {
return 0, ArmorCorrupt
}
if bytes.HasPrefix(line, armorEnd) {
l.eof = true
return 0, io.EOF
}
if len(line) == 5 && line[0] == '=' {
// This is the checksum line
var expectedBytes [3]byte
var m int
m, err = base64.StdEncoding.Decode(expectedBytes[0:], line[1:])
if m != 3 || err != nil {
return
}
l.crc = uint32(expectedBytes[0])<<16 |
uint32(expectedBytes[1])<<8 |
uint32(expectedBytes[2])
line, _, err = l.in.ReadLine()
if err != nil && err != io.EOF {
return
}
if !bytes.HasPrefix(line, armorEnd) {
return 0, ArmorCorrupt
}
l.eof = true
l.crcSet = true
return 0, io.EOF
}
if len(line) > 96 {
return 0, ArmorCorrupt
}
n = copy(p, line)
bytesToSave := len(line) - n
if bytesToSave > 0 {
if cap(l.buf) < bytesToSave {
l.buf = make([]byte, 0, bytesToSave)
}
l.buf = l.buf[0:bytesToSave]
copy(l.buf, line[n:])
}
return
}
// openpgpReader passes Read calls to the underlying base64 decoder, but keeps
// a running CRC of the resulting data and checks the CRC against the value
// found by the lineReader at EOF.
type openpgpReader struct {
lReader *lineReader
b64Reader io.Reader
currentCRC uint32
}
func (r *openpgpReader) Read(p []byte) (n int, err error) {
n, err = r.b64Reader.Read(p)
r.currentCRC = crc24(r.currentCRC, p[:n])
if err == io.EOF && r.lReader.crcSet && r.lReader.crc != uint32(r.currentCRC&crc24Mask) {
return 0, ArmorCorrupt
}
return
}
// Decode reads a PGP armored block from the given Reader. It will ignore
// leading garbage. If it doesn't find a block, it will return nil, io.EOF. The
// given Reader is not usable after calling this function: an arbitrary amount
// of data may have been read past the end of the block.
func Decode(in io.Reader) (p *Block, err error) {
r := bufio.NewReaderSize(in, 100)
var line []byte
ignoreNext := false
TryNextBlock:
p = nil
// Skip leading garbage
for {
ignoreThis := ignoreNext
line, ignoreNext, err = r.ReadLine()
if err != nil {
return
}
if ignoreNext || ignoreThis {
continue
}
line = bytes.TrimSpace(line)
if len(line) > len(armorStart)+len(armorEndOfLine) && bytes.HasPrefix(line, armorStart) {
break
}
}
p = new(Block)
p.Type = string(line[len(armorStart) : len(line)-len(armorEndOfLine)])
p.Header = make(map[string]string)
nextIsContinuation := false
var lastKey string
// Read headers
for {
isContinuation := nextIsContinuation
line, nextIsContinuation, err = r.ReadLine()
if err != nil {
p = nil
return
}
if isContinuation {
p.Header[lastKey] += string(line)
continue
}
line = bytes.TrimSpace(line)
if len(line) == 0 {
break
}
i := bytes.Index(line, []byte(": "))
if i == -1 {
goto TryNextBlock
}
lastKey = string(line[:i])
p.Header[lastKey] = string(line[i+2:])
}
p.lReader.in = r
p.oReader.currentCRC = crc24Init
p.oReader.lReader = &p.lReader
p.oReader.b64Reader = base64.NewDecoder(base64.StdEncoding, &p.lReader)
p.Body = &p.oReader
return
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package armor
import (
"encoding/base64"
"io"
)
var armorHeaderSep = []byte(": ")
var blockEnd = []byte("\n=")
var newline = []byte("\n")
var armorEndOfLineOut = []byte("-----\n")
// writeSlices writes its arguments to the given Writer.
func writeSlices(out io.Writer, slices ...[]byte) (err error) {
for _, s := range slices {
_, err = out.Write(s)
if err != nil {
return err
}
}
return
}
// lineBreaker breaks data across several lines, all of the same byte length
// (except possibly the last). Lines are broken with a single '\n'.
type lineBreaker struct {
lineLength int
line []byte
used int
out io.Writer
haveWritten bool
}
func newLineBreaker(out io.Writer, lineLength int) *lineBreaker {
return &lineBreaker{
lineLength: lineLength,
line: make([]byte, lineLength),
used: 0,
out: out,
}
}
func (l *lineBreaker) Write(b []byte) (n int, err error) {
n = len(b)
if n == 0 {
return
}
if l.used == 0 && l.haveWritten {
_, err = l.out.Write([]byte{'\n'})
if err != nil {
return
}
}
if l.used+len(b) < l.lineLength {
l.used += copy(l.line[l.used:], b)
return
}
l.haveWritten = true
_, err = l.out.Write(l.line[0:l.used])
if err != nil {
return
}
excess := l.lineLength - l.used
l.used = 0
_, err = l.out.Write(b[0:excess])
if err != nil {
return
}
_, err = l.Write(b[excess:])
return
}
func (l *lineBreaker) Close() (err error) {
if l.used > 0 {
_, err = l.out.Write(l.line[0:l.used])
if err != nil {
return
}
}
return
}
// encoding keeps track of a running CRC24 over the data which has been written
// to it and outputs a OpenPGP checksum when closed, followed by an armor
// trailer.
//
// It's built into a stack of io.Writers:
// encoding -> base64 encoder -> lineBreaker -> out
type encoding struct {
out io.Writer
breaker *lineBreaker
b64 io.WriteCloser
crc uint32
blockType []byte
}
func (e *encoding) Write(data []byte) (n int, err error) {
e.crc = crc24(e.crc, data)
return e.b64.Write(data)
}
func (e *encoding) Close() (err error) {
err = e.b64.Close()
if err != nil {
return
}
e.breaker.Close()
var checksumBytes [3]byte
checksumBytes[0] = byte(e.crc >> 16)
checksumBytes[1] = byte(e.crc >> 8)
checksumBytes[2] = byte(e.crc)
var b64ChecksumBytes [4]byte
base64.StdEncoding.Encode(b64ChecksumBytes[:], checksumBytes[:])
return writeSlices(e.out, blockEnd, b64ChecksumBytes[:], newline, armorEnd, e.blockType, armorEndOfLine)
}
// Encode returns a WriteCloser which will encode the data written to it in
// OpenPGP armor.
func Encode(out io.Writer, blockType string, headers map[string]string) (w io.WriteCloser, err error) {
bType := []byte(blockType)
err = writeSlices(out, armorStart, bType, armorEndOfLineOut)
if err != nil {
return
}
for k, v := range headers {
err = writeSlices(out, []byte(k), armorHeaderSep, []byte(v), newline)
if err != nil {
return
}
}
_, err = out.Write(newline)
if err != nil {
return
}
e := &encoding{
out: out,
breaker: newLineBreaker(out, 64),
crc: crc24Init,
blockType: bType,
}
e.b64 = base64.NewEncoder(base64.StdEncoding, e.breaker)
return e, nil
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import "hash"
// NewCanonicalTextHash reformats text written to it into the canonical
// form and then applies the hash h. See RFC 4880, section 5.2.1.
func NewCanonicalTextHash(h hash.Hash) hash.Hash {
return &canonicalTextHash{h, 0}
}
type canonicalTextHash struct {
h hash.Hash
s int
}
var newline = []byte{'\r', '\n'}
func (cth *canonicalTextHash) Write(buf []byte) (int, error) {
start := 0
for i, c := range buf {
switch cth.s {
case 0:
if c == '\r' {
cth.s = 1
} else if c == '\n' {
cth.h.Write(buf[start:i])
cth.h.Write(newline)
start = i + 1
}
case 1:
cth.s = 0
}
}
cth.h.Write(buf[start:])
return len(buf), nil
}
func (cth *canonicalTextHash) Sum(in []byte) []byte {
return cth.h.Sum(in)
}
func (cth *canonicalTextHash) Reset() {
cth.h.Reset()
cth.s = 0
}
func (cth *canonicalTextHash) Size() int {
return cth.h.Size()
}
func (cth *canonicalTextHash) BlockSize() int {
return cth.h.BlockSize()
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package elgamal implements ElGamal encryption, suitable for OpenPGP,
// as specified in "A Public-Key Cryptosystem and a Signature Scheme Based on
// Discrete Logarithms," IEEE Transactions on Information Theory, v. IT-31,
// n. 4, 1985, pp. 469-472.
//
// This form of ElGamal embeds PKCS#1 v1.5 padding, which may make it
// unsuitable for other protocols. RSA should be used in preference in any
// case.
package elgamal // import "golang.org/x/crypto/openpgp/elgamal"
import (
"crypto/rand"
"crypto/subtle"
"errors"
"io"
"math/big"
)
// PublicKey represents an ElGamal public key.
type PublicKey struct {
G, P, Y *big.Int
}
// PrivateKey represents an ElGamal private key.
type PrivateKey struct {
PublicKey
X *big.Int
}
// Encrypt encrypts the given message to the given public key. The result is a
// pair of integers. Errors can result from reading random, or because msg is
// too large to be encrypted to the public key.
func Encrypt(random io.Reader, pub *PublicKey, msg []byte) (c1, c2 *big.Int, err error) {
pLen := (pub.P.BitLen() + 7) / 8
if len(msg) > pLen-11 {
err = errors.New("elgamal: message too long")
return
}
// EM = 0x02 || PS || 0x00 || M
em := make([]byte, pLen-1)
em[0] = 2
ps, mm := em[1:len(em)-len(msg)-1], em[len(em)-len(msg):]
err = nonZeroRandomBytes(ps, random)
if err != nil {
return
}
em[len(em)-len(msg)-1] = 0
copy(mm, msg)
m := new(big.Int).SetBytes(em)
k, err := rand.Int(random, pub.P)
if err != nil {
return
}
c1 = new(big.Int).Exp(pub.G, k, pub.P)
s := new(big.Int).Exp(pub.Y, k, pub.P)
c2 = s.Mul(s, m)
c2.Mod(c2, pub.P)
return
}
// Decrypt takes two integers, resulting from an ElGamal encryption, and
// returns the plaintext of the message. An error can result only if the
// ciphertext is invalid. Users should keep in mind that this is a padding
// oracle and thus, if exposed to an adaptive chosen ciphertext attack, can
// be used to break the cryptosystem. See ``Chosen Ciphertext Attacks
// Against Protocols Based on the RSA Encryption Standard PKCS #1'', Daniel
// Bleichenbacher, Advances in Cryptology (Crypto '98),
func Decrypt(priv *PrivateKey, c1, c2 *big.Int) (msg []byte, err error) {
s := new(big.Int).Exp(c1, priv.X, priv.P)
if s.ModInverse(s, priv.P) == nil {
return nil, errors.New("elgamal: invalid private key")
}
s.Mul(s, c2)
s.Mod(s, priv.P)
em := s.Bytes()
firstByteIsTwo := subtle.ConstantTimeByteEq(em[0], 2)
// The remainder of the plaintext must be a string of non-zero random
// octets, followed by a 0, followed by the message.
// lookingForIndex: 1 iff we are still looking for the zero.
// index: the offset of the first zero byte.
var lookingForIndex, index int
lookingForIndex = 1
for i := 1; i < len(em); i++ {
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
}
if firstByteIsTwo != 1 || lookingForIndex != 0 || index < 9 {
return nil, errors.New("elgamal: decryption error")
}
return em[index+1:], nil
}
// nonZeroRandomBytes fills the given slice with non-zero random octets.
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
_, err = io.ReadFull(rand, s)
if err != nil {
return
}
for i := 0; i < len(s); i++ {
for s[i] == 0 {
_, err = io.ReadFull(rand, s[i:i+1])
if err != nil {
return
}
}
}
return
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package errors contains common error types for the OpenPGP packages.
package errors // import "golang.org/x/crypto/openpgp/errors"
import (
"strconv"
)
// A StructuralError is returned when OpenPGP data is found to be syntactically
// invalid.
type StructuralError string
func (s StructuralError) Error() string {
return "openpgp: invalid data: " + string(s)
}
// UnsupportedError indicates that, although the OpenPGP data is valid, it
// makes use of currently unimplemented features.
type UnsupportedError string
func (s UnsupportedError) Error() string {
return "openpgp: unsupported feature: " + string(s)
}
// InvalidArgumentError indicates that the caller is in error and passed an
// incorrect value.
type InvalidArgumentError string
func (i InvalidArgumentError) Error() string {
return "openpgp: invalid argument: " + string(i)
}
// SignatureError indicates that a syntactically valid signature failed to
// validate.
type SignatureError string
func (b SignatureError) Error() string {
return "openpgp: invalid signature: " + string(b)
}
type keyIncorrectError int
func (ki keyIncorrectError) Error() string {
return "openpgp: incorrect key"
}
var ErrKeyIncorrect error = keyIncorrectError(0)
type unknownIssuerError int
func (unknownIssuerError) Error() string {
return "openpgp: signature made by unknown entity"
}
var ErrUnknownIssuer error = unknownIssuerError(0)
type keyRevokedError int
func (keyRevokedError) Error() string {
return "openpgp: signature made by revoked key"
}
var ErrKeyRevoked error = keyRevokedError(0)
type UnknownPacketTypeError uint8
func (upte UnknownPacketTypeError) Error() string {
return "openpgp: unknown packet type: " + strconv.Itoa(int(upte))
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"compress/bzip2"
"compress/flate"
"compress/zlib"
"golang.org/x/crypto/openpgp/errors"
"io"
"strconv"
)
// Compressed represents a compressed OpenPGP packet. The decompressed contents
// will contain more OpenPGP packets. See RFC 4880, section 5.6.
type Compressed struct {
Body io.Reader
}
const (
NoCompression = flate.NoCompression
BestSpeed = flate.BestSpeed
BestCompression = flate.BestCompression
DefaultCompression = flate.DefaultCompression
)
// CompressionConfig contains compressor configuration settings.
type CompressionConfig struct {
// Level is the compression level to use. It must be set to
// between -1 and 9, with -1 causing the compressor to use the
// default compression level, 0 causing the compressor to use
// no compression and 1 to 9 representing increasing (better,
// slower) compression levels. If Level is less than -1 or
// more then 9, a non-nil error will be returned during
// encryption. See the constants above for convenient common
// settings for Level.
Level int
}
func (c *Compressed) parse(r io.Reader) error {
var buf [1]byte
_, err := readFull(r, buf[:])
if err != nil {
return err
}
switch buf[0] {
case 1:
c.Body = flate.NewReader(r)
case 2:
c.Body, err = zlib.NewReader(r)
case 3:
c.Body = bzip2.NewReader(r)
default:
err = errors.UnsupportedError("unknown compression algorithm: " + strconv.Itoa(int(buf[0])))
}
return err
}
// compressedWriterCloser represents the serialized compression stream
// header and the compressor. Its Close() method ensures that both the
// compressor and serialized stream header are closed. Its Write()
// method writes to the compressor.
type compressedWriteCloser struct {
sh io.Closer // Stream Header
c io.WriteCloser // Compressor
}
func (cwc compressedWriteCloser) Write(p []byte) (int, error) {
return cwc.c.Write(p)
}
func (cwc compressedWriteCloser) Close() (err error) {
err = cwc.c.Close()
if err != nil {
return err
}
return cwc.sh.Close()
}
// SerializeCompressed serializes a compressed data packet to w and
// returns a WriteCloser to which the literal data packets themselves
// can be written and which MUST be closed on completion. If cc is
// nil, sensible defaults will be used to configure the compression
// algorithm.
func SerializeCompressed(w io.WriteCloser, algo CompressionAlgo, cc *CompressionConfig) (literaldata io.WriteCloser, err error) {
compressed, err := serializeStreamHeader(w, packetTypeCompressed)
if err != nil {
return
}
_, err = compressed.Write([]byte{uint8(algo)})
if err != nil {
return
}
level := DefaultCompression
if cc != nil {
level = cc.Level
}
var compressor io.WriteCloser
switch algo {
case CompressionZIP:
compressor, err = flate.NewWriter(compressed, level)
case CompressionZLIB:
compressor, err = zlib.NewWriterLevel(compressed, level)
default:
s := strconv.Itoa(int(algo))
err = errors.UnsupportedError("Unsupported compression algorithm: " + s)
}
if err != nil {
return
}
literaldata = compressedWriteCloser{compressed, compressor}
return
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"crypto/rand"
"io"
"time"
)
// Config collects a number of parameters along with sensible defaults.
// A nil *Config is valid and results in all default values.
type Config struct {
// Rand provides the source of entropy.
// If nil, the crypto/rand Reader is used.
Rand io.Reader
// DefaultHash is the default hash function to be used.
// If zero, SHA-256 is used.
DefaultHash crypto.Hash
// DefaultCipher is the cipher to be used.
// If zero, AES-128 is used.
DefaultCipher CipherFunction
// Time returns the current time as the number of seconds since the
// epoch. If Time is nil, time.Now is used.
Time func() time.Time
// DefaultCompressionAlgo is the compression algorithm to be
// applied to the plaintext before encryption. If zero, no
// compression is done.
DefaultCompressionAlgo CompressionAlgo
// CompressionConfig configures the compression settings.
CompressionConfig *CompressionConfig
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 1024 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 65536 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. When set, it is strongly encrouraged to
// use a value that is at least 65536. See RFC 4880 Section
// 3.7.1.3.
S2KCount int
// RSABits is the number of bits in new RSA keys made with NewEntity.
// If zero, then 2048 bit keys are created.
RSABits int
}
func (c *Config) Random() io.Reader {
if c == nil || c.Rand == nil {
return rand.Reader
}
return c.Rand
}
func (c *Config) Hash() crypto.Hash {
if c == nil || uint(c.DefaultHash) == 0 {
return crypto.SHA256
}
return c.DefaultHash
}
func (c *Config) Cipher() CipherFunction {
if c == nil || uint8(c.DefaultCipher) == 0 {
return CipherAES128
}
return c.DefaultCipher
}
func (c *Config) Now() time.Time {
if c == nil || c.Time == nil {
return time.Now()
}
return c.Time()
}
func (c *Config) Compression() CompressionAlgo {
if c == nil {
return CompressionNone
}
return c.DefaultCompressionAlgo
}
func (c *Config) PasswordHashIterations() int {
if c == nil || c.S2KCount == 0 {
return 0
}
return c.S2KCount
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"crypto/rsa"
"encoding/binary"
"io"
"math/big"
"strconv"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
)
const encryptedKeyVersion = 3
// EncryptedKey represents a public-key encrypted session key. See RFC 4880,
// section 5.1.
type EncryptedKey struct {
KeyId uint64
Algo PublicKeyAlgorithm
CipherFunc CipherFunction // only valid after a successful Decrypt
Key []byte // only valid after a successful Decrypt
encryptedMPI1, encryptedMPI2 parsedMPI
}
func (e *EncryptedKey) parse(r io.Reader) (err error) {
var buf [10]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != encryptedKeyVersion {
return errors.UnsupportedError("unknown EncryptedKey version " + strconv.Itoa(int(buf[0])))
}
e.KeyId = binary.BigEndian.Uint64(buf[1:9])
e.Algo = PublicKeyAlgorithm(buf[9])
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
case PubKeyAlgoElGamal:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
e.encryptedMPI2.bytes, e.encryptedMPI2.bitLength, err = readMPI(r)
if err != nil {
return
}
}
_, err = consumeAll(r)
return
}
func checksumKeyMaterial(key []byte) uint16 {
var checksum uint16
for _, v := range key {
checksum += uint16(v)
}
return checksum
}
// Decrypt decrypts an encrypted session key with the given private key. The
// private key must have been decrypted first.
// If config is nil, sensible defaults will be used.
func (e *EncryptedKey) Decrypt(priv *PrivateKey, config *Config) error {
var err error
var b []byte
// TODO(agl): use session key decryption routines here to avoid
// padding oracle attacks.
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
// Supports both *rsa.PrivateKey and crypto.Decrypter
k := priv.PrivateKey.(crypto.Decrypter)
b, err = k.Decrypt(config.Random(), padToKeySize(k.Public().(*rsa.PublicKey), e.encryptedMPI1.bytes), nil)
case PubKeyAlgoElGamal:
c1 := new(big.Int).SetBytes(e.encryptedMPI1.bytes)
c2 := new(big.Int).SetBytes(e.encryptedMPI2.bytes)
b, err = elgamal.Decrypt(priv.PrivateKey.(*elgamal.PrivateKey), c1, c2)
default:
err = errors.InvalidArgumentError("cannot decrypted encrypted session key with private key of type " + strconv.Itoa(int(priv.PubKeyAlgo)))
}
if err != nil {
return err
}
e.CipherFunc = CipherFunction(b[0])
e.Key = b[1 : len(b)-2]
expectedChecksum := uint16(b[len(b)-2])<<8 | uint16(b[len(b)-1])
checksum := checksumKeyMaterial(e.Key)
if checksum != expectedChecksum {
return errors.StructuralError("EncryptedKey checksum incorrect")
}
return nil
}
// Serialize writes the encrypted key packet, e, to w.
func (e *EncryptedKey) Serialize(w io.Writer) error {
var mpiLen int
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
mpiLen = 2 + len(e.encryptedMPI1.bytes)
case PubKeyAlgoElGamal:
mpiLen = 2 + len(e.encryptedMPI1.bytes) + 2 + len(e.encryptedMPI2.bytes)
default:
return errors.InvalidArgumentError("don't know how to serialize encrypted key type " + strconv.Itoa(int(e.Algo)))
}
serializeHeader(w, packetTypeEncryptedKey, 1 /* version */ +8 /* key id */ +1 /* algo */ +mpiLen)
w.Write([]byte{encryptedKeyVersion})
binary.Write(w, binary.BigEndian, e.KeyId)
w.Write([]byte{byte(e.Algo)})
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
writeMPIs(w, e.encryptedMPI1)
case PubKeyAlgoElGamal:
writeMPIs(w, e.encryptedMPI1, e.encryptedMPI2)
default:
panic("internal error")
}
return nil
}
// SerializeEncryptedKey serializes an encrypted key packet to w that contains
// key, encrypted to pub.
// If config is nil, sensible defaults will be used.
func SerializeEncryptedKey(w io.Writer, pub *PublicKey, cipherFunc CipherFunction, key []byte, config *Config) error {
var buf [10]byte
buf[0] = encryptedKeyVersion
binary.BigEndian.PutUint64(buf[1:9], pub.KeyId)
buf[9] = byte(pub.PubKeyAlgo)
keyBlock := make([]byte, 1 /* cipher type */ +len(key)+2 /* checksum */)
keyBlock[0] = byte(cipherFunc)
copy(keyBlock[1:], key)
checksum := checksumKeyMaterial(key)
keyBlock[1+len(key)] = byte(checksum >> 8)
keyBlock[1+len(key)+1] = byte(checksum)
switch pub.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
return serializeEncryptedKeyRSA(w, config.Random(), buf, pub.PublicKey.(*rsa.PublicKey), keyBlock)
case PubKeyAlgoElGamal:
return serializeEncryptedKeyElGamal(w, config.Random(), buf, pub.PublicKey.(*elgamal.PublicKey), keyBlock)
case PubKeyAlgoDSA, PubKeyAlgoRSASignOnly:
return errors.InvalidArgumentError("cannot encrypt to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo)))
}
return errors.UnsupportedError("encrypting a key to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo)))
}
func serializeEncryptedKeyRSA(w io.Writer, rand io.Reader, header [10]byte, pub *rsa.PublicKey, keyBlock []byte) error {
cipherText, err := rsa.EncryptPKCS1v15(rand, pub, keyBlock)
if err != nil {
return errors.InvalidArgumentError("RSA encryption failed: " + err.Error())
}
packetLen := 10 /* header length */ + 2 /* mpi size */ + len(cipherText)
err = serializeHeader(w, packetTypeEncryptedKey, packetLen)
if err != nil {
return err
}
_, err = w.Write(header[:])
if err != nil {
return err
}
return writeMPI(w, 8*uint16(len(cipherText)), cipherText)
}
func serializeEncryptedKeyElGamal(w io.Writer, rand io.Reader, header [10]byte, pub *elgamal.PublicKey, keyBlock []byte) error {
c1, c2, err := elgamal.Encrypt(rand, pub, keyBlock)
if err != nil {
return errors.InvalidArgumentError("ElGamal encryption failed: " + err.Error())
}
packetLen := 10 /* header length */
packetLen += 2 /* mpi size */ + (c1.BitLen()+7)/8
packetLen += 2 /* mpi size */ + (c2.BitLen()+7)/8
err = serializeHeader(w, packetTypeEncryptedKey, packetLen)
if err != nil {
return err
}
_, err = w.Write(header[:])
if err != nil {
return err
}
err = writeBig(w, c1)
if err != nil {
return err
}
return writeBig(w, c2)
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"encoding/binary"
"io"
)
// LiteralData represents an encrypted file. See RFC 4880, section 5.9.
type LiteralData struct {
IsBinary bool
FileName string
Time uint32 // Unix epoch time. Either creation time or modification time. 0 means undefined.
Body io.Reader
}
// ForEyesOnly returns whether the contents of the LiteralData have been marked
// as especially sensitive.
func (l *LiteralData) ForEyesOnly() bool {
return l.FileName == "_CONSOLE"
}
func (l *LiteralData) parse(r io.Reader) (err error) {
var buf [256]byte
_, err = readFull(r, buf[:2])
if err != nil {
return
}
l.IsBinary = buf[0] == 'b'
fileNameLen := int(buf[1])
_, err = readFull(r, buf[:fileNameLen])
if err != nil {
return
}
l.FileName = string(buf[:fileNameLen])
_, err = readFull(r, buf[:4])
if err != nil {
return
}
l.Time = binary.BigEndian.Uint32(buf[:4])
l.Body = r
return
}
// SerializeLiteral serializes a literal data packet to w and returns a
// WriteCloser to which the data itself can be written and which MUST be closed
// on completion. The fileName is truncated to 255 bytes.
func SerializeLiteral(w io.WriteCloser, isBinary bool, fileName string, time uint32) (plaintext io.WriteCloser, err error) {
var buf [4]byte
buf[0] = 't'
if isBinary {
buf[0] = 'b'
}
if len(fileName) > 255 {
fileName = fileName[:255]
}
buf[1] = byte(len(fileName))
inner, err := serializeStreamHeader(w, packetTypeLiteralData)
if err != nil {
return
}
_, err = inner.Write(buf[:2])
if err != nil {
return
}
_, err = inner.Write([]byte(fileName))
if err != nil {
return
}
binary.BigEndian.PutUint32(buf[:], time)
_, err = inner.Write(buf[:])
if err != nil {
return
}
plaintext = inner
return
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// OpenPGP CFB Mode. http://tools.ietf.org/html/rfc4880#section-13.9
package packet
import (
"crypto/cipher"
)
type ocfbEncrypter struct {
b cipher.Block
fre []byte
outUsed int
}
// An OCFBResyncOption determines if the "resynchronization step" of OCFB is
// performed.
type OCFBResyncOption bool
const (
OCFBResync OCFBResyncOption = true
OCFBNoResync OCFBResyncOption = false
)
// NewOCFBEncrypter returns a cipher.Stream which encrypts data with OpenPGP's
// cipher feedback mode using the given cipher.Block, and an initial amount of
// ciphertext. randData must be random bytes and be the same length as the
// cipher.Block's block size. Resync determines if the "resynchronization step"
// from RFC 4880, 13.9 step 7 is performed. Different parts of OpenPGP vary on
// this point.
func NewOCFBEncrypter(block cipher.Block, randData []byte, resync OCFBResyncOption) (cipher.Stream, []byte) {
blockSize := block.BlockSize()
if len(randData) != blockSize {
return nil, nil
}
x := &ocfbEncrypter{
b: block,
fre: make([]byte, blockSize),
outUsed: 0,
}
prefix := make([]byte, blockSize+2)
block.Encrypt(x.fre, x.fre)
for i := 0; i < blockSize; i++ {
prefix[i] = randData[i] ^ x.fre[i]
}
block.Encrypt(x.fre, prefix[:blockSize])
prefix[blockSize] = x.fre[0] ^ randData[blockSize-2]
prefix[blockSize+1] = x.fre[1] ^ randData[blockSize-1]
if resync {
block.Encrypt(x.fre, prefix[2:])
} else {
x.fre[0] = prefix[blockSize]
x.fre[1] = prefix[blockSize+1]
x.outUsed = 2
}
return x, prefix
}
func (x *ocfbEncrypter) XORKeyStream(dst, src []byte) {
for i := 0; i < len(src); i++ {
if x.outUsed == len(x.fre) {
x.b.Encrypt(x.fre, x.fre)
x.outUsed = 0
}
x.fre[x.outUsed] ^= src[i]
dst[i] = x.fre[x.outUsed]
x.outUsed++
}
}
type ocfbDecrypter struct {
b cipher.Block
fre []byte
outUsed int
}
// NewOCFBDecrypter returns a cipher.Stream which decrypts data with OpenPGP's
// cipher feedback mode using the given cipher.Block. Prefix must be the first
// blockSize + 2 bytes of the ciphertext, where blockSize is the cipher.Block's
// block size. If an incorrect key is detected then nil is returned. On
// successful exit, blockSize+2 bytes of decrypted data are written into
// prefix. Resync determines if the "resynchronization step" from RFC 4880,
// 13.9 step 7 is performed. Different parts of OpenPGP vary on this point.
func NewOCFBDecrypter(block cipher.Block, prefix []byte, resync OCFBResyncOption) cipher.Stream {
blockSize := block.BlockSize()
if len(prefix) != blockSize+2 {
return nil
}
x := &ocfbDecrypter{
b: block,
fre: make([]byte, blockSize),
outUsed: 0,
}
prefixCopy := make([]byte, len(prefix))
copy(prefixCopy, prefix)
block.Encrypt(x.fre, x.fre)
for i := 0; i < blockSize; i++ {
prefixCopy[i] ^= x.fre[i]
}
block.Encrypt(x.fre, prefix[:blockSize])
prefixCopy[blockSize] ^= x.fre[0]
prefixCopy[blockSize+1] ^= x.fre[1]
if prefixCopy[blockSize-2] != prefixCopy[blockSize] ||
prefixCopy[blockSize-1] != prefixCopy[blockSize+1] {
return nil
}
if resync {
block.Encrypt(x.fre, prefix[2:])
} else {
x.fre[0] = prefix[blockSize]
x.fre[1] = prefix[blockSize+1]
x.outUsed = 2
}
copy(prefix, prefixCopy)
return x
}
func (x *ocfbDecrypter) XORKeyStream(dst, src []byte) {
for i := 0; i < len(src); i++ {
if x.outUsed == len(x.fre) {
x.b.Encrypt(x.fre, x.fre)
x.outUsed = 0
}
c := src[i]
dst[i] = x.fre[x.outUsed] ^ src[i]
x.fre[x.outUsed] = c
x.outUsed++
}
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"encoding/binary"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
"io"
"strconv"
)
// OnePassSignature represents a one-pass signature packet. See RFC 4880,
// section 5.4.
type OnePassSignature struct {
SigType SignatureType
Hash crypto.Hash
PubKeyAlgo PublicKeyAlgorithm
KeyId uint64
IsLast bool
}
const onePassSignatureVersion = 3
func (ops *OnePassSignature) parse(r io.Reader) (err error) {
var buf [13]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != onePassSignatureVersion {
err = errors.UnsupportedError("one-pass-signature packet version " + strconv.Itoa(int(buf[0])))
}
var ok bool
ops.Hash, ok = s2k.HashIdToHash(buf[2])
if !ok {
return errors.UnsupportedError("hash function: " + strconv.Itoa(int(buf[2])))
}
ops.SigType = SignatureType(buf[1])
ops.PubKeyAlgo = PublicKeyAlgorithm(buf[3])
ops.KeyId = binary.BigEndian.Uint64(buf[4:12])
ops.IsLast = buf[12] != 0
return
}
// Serialize marshals the given OnePassSignature to w.
func (ops *OnePassSignature) Serialize(w io.Writer) error {
var buf [13]byte
buf[0] = onePassSignatureVersion
buf[1] = uint8(ops.SigType)
var ok bool
buf[2], ok = s2k.HashToHashId(ops.Hash)
if !ok {
return errors.UnsupportedError("hash type: " + strconv.Itoa(int(ops.Hash)))
}
buf[3] = uint8(ops.PubKeyAlgo)
binary.BigEndian.PutUint64(buf[4:12], ops.KeyId)
if ops.IsLast {
buf[12] = 1
}
if err := serializeHeader(w, packetTypeOnePassSignature, len(buf)); err != nil {
return err
}
_, err := w.Write(buf[:])
return err
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"io"
"io/ioutil"
"golang.org/x/crypto/openpgp/errors"
)
// OpaquePacket represents an OpenPGP packet as raw, unparsed data. This is
// useful for splitting and storing the original packet contents separately,
// handling unsupported packet types or accessing parts of the packet not yet
// implemented by this package.
type OpaquePacket struct {
// Packet type
Tag uint8
// Reason why the packet was parsed opaquely
Reason error
// Binary contents of the packet data
Contents []byte
}
func (op *OpaquePacket) parse(r io.Reader) (err error) {
op.Contents, err = ioutil.ReadAll(r)
return
}
// Serialize marshals the packet to a writer in its original form, including
// the packet header.
func (op *OpaquePacket) Serialize(w io.Writer) (err error) {
err = serializeHeader(w, packetType(op.Tag), len(op.Contents))
if err == nil {
_, err = w.Write(op.Contents)
}
return
}
// Parse attempts to parse the opaque contents into a structure supported by
// this package. If the packet is not known then the result will be another
// OpaquePacket.
func (op *OpaquePacket) Parse() (p Packet, err error) {
hdr := bytes.NewBuffer(nil)
err = serializeHeader(hdr, packetType(op.Tag), len(op.Contents))
if err != nil {
op.Reason = err
return op, err
}
p, err = Read(io.MultiReader(hdr, bytes.NewBuffer(op.Contents)))
if err != nil {
op.Reason = err
p = op
}
return
}
// OpaqueReader reads OpaquePackets from an io.Reader.
type OpaqueReader struct {
r io.Reader
}
func NewOpaqueReader(r io.Reader) *OpaqueReader {
return &OpaqueReader{r: r}
}
// Read the next OpaquePacket.
func (or *OpaqueReader) Next() (op *OpaquePacket, err error) {
tag, _, contents, err := readHeader(or.r)
if err != nil {
return
}
op = &OpaquePacket{Tag: uint8(tag), Reason: err}
err = op.parse(contents)
if err != nil {
consumeAll(contents)
}
return
}
// OpaqueSubpacket represents an unparsed OpenPGP subpacket,
// as found in signature and user attribute packets.
type OpaqueSubpacket struct {
SubType uint8
Contents []byte
}
// OpaqueSubpackets extracts opaque, unparsed OpenPGP subpackets from
// their byte representation.
func OpaqueSubpackets(contents []byte) (result []*OpaqueSubpacket, err error) {
var (
subHeaderLen int
subPacket *OpaqueSubpacket
)
for len(contents) > 0 {
subHeaderLen, subPacket, err = nextSubpacket(contents)
if err != nil {
break
}
result = append(result, subPacket)
contents = contents[subHeaderLen+len(subPacket.Contents):]
}
return
}
func nextSubpacket(contents []byte) (subHeaderLen int, subPacket *OpaqueSubpacket, err error) {
// RFC 4880, section 5.2.3.1
var subLen uint32
if len(contents) < 1 {
goto Truncated
}
subPacket = &OpaqueSubpacket{}
switch {
case contents[0] < 192:
subHeaderLen = 2 // 1 length byte, 1 subtype byte
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[0])
contents = contents[1:]
case contents[0] < 255:
subHeaderLen = 3 // 2 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[0]-192)<<8 + uint32(contents[1]) + 192
contents = contents[2:]
default:
subHeaderLen = 6 // 5 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[1])<<24 |
uint32(contents[2])<<16 |
uint32(contents[3])<<8 |
uint32(contents[4])
contents = contents[5:]
}
if subLen > uint32(len(contents)) || subLen == 0 {
goto Truncated
}
subPacket.SubType = contents[0]
subPacket.Contents = contents[1:subLen]
return
Truncated:
err = errors.StructuralError("subpacket truncated")
return
}
func (osp *OpaqueSubpacket) Serialize(w io.Writer) (err error) {
buf := make([]byte, 6)
n := serializeSubpacketLength(buf, len(osp.Contents)+1)
buf[n] = osp.SubType
if _, err = w.Write(buf[:n+1]); err != nil {
return
}
_, err = w.Write(osp.Contents)
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/cipher"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"crypto/sha1"
"io"
"io/ioutil"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// PrivateKey represents a possibly encrypted private key. See RFC 4880,
// section 5.5.3.
type PrivateKey struct {
PublicKey
Encrypted bool // if true then the private key is unavailable until Decrypt has been called.
encryptedData []byte
cipher CipherFunction
s2k func(out, in []byte)
PrivateKey interface{} // An *{rsa|dsa|ecdsa}.PrivateKey or crypto.Signer/crypto.Decrypter (Decryptor RSA only).
sha1Checksum bool
iv []byte
}
func NewRSAPrivateKey(creationTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewDSAPrivateKey(creationTime time.Time, priv *dsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewElGamalPrivateKey(creationTime time.Time, priv *elgamal.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewECDSAPrivateKey(creationTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewECDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA or ECDSA.
func NewSignerPrivateKey(creationTime time.Time, signer crypto.Signer) *PrivateKey {
pk := new(PrivateKey)
// In general, the public Keys should be used as pointers. We still
// type-switch on the values, for backwards-compatibility.
switch pubkey := signer.Public().(type) {
case *rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, pubkey)
case rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey)
case *ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, pubkey)
case ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey)
default:
panic("openpgp: unknown crypto.Signer type in NewSignerPrivateKey")
}
pk.PrivateKey = signer
return pk
}
func (pk *PrivateKey) parse(r io.Reader) (err error) {
err = (&pk.PublicKey).parse(r)
if err != nil {
return
}
var buf [1]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
s2kType := buf[0]
switch s2kType {
case 0:
pk.s2k = nil
pk.Encrypted = false
case 254, 255:
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.cipher = CipherFunction(buf[0])
pk.Encrypted = true
pk.s2k, err = s2k.Parse(r)
if err != nil {
return
}
if s2kType == 254 {
pk.sha1Checksum = true
}
default:
return errors.UnsupportedError("deprecated s2k function in private key")
}
if pk.Encrypted {
blockSize := pk.cipher.blockSize()
if blockSize == 0 {
return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher)))
}
pk.iv = make([]byte, blockSize)
_, err = readFull(r, pk.iv)
if err != nil {
return
}
}
pk.encryptedData, err = ioutil.ReadAll(r)
if err != nil {
return
}
if !pk.Encrypted {
return pk.parsePrivateKey(pk.encryptedData)
}
return
}
func mod64kHash(d []byte) uint16 {
var h uint16
for _, b := range d {
h += uint16(b)
}
return h
}
func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
// TODO(agl): support encrypted private keys
buf := bytes.NewBuffer(nil)
err = pk.PublicKey.serializeWithoutHeaders(buf)
if err != nil {
return
}
buf.WriteByte(0 /* no encryption */)
privateKeyBuf := bytes.NewBuffer(nil)
switch priv := pk.PrivateKey.(type) {
case *rsa.PrivateKey:
err = serializeRSAPrivateKey(privateKeyBuf, priv)
case *dsa.PrivateKey:
err = serializeDSAPrivateKey(privateKeyBuf, priv)
case *elgamal.PrivateKey:
err = serializeElGamalPrivateKey(privateKeyBuf, priv)
case *ecdsa.PrivateKey:
err = serializeECDSAPrivateKey(privateKeyBuf, priv)
default:
err = errors.InvalidArgumentError("unknown private key type")
}
if err != nil {
return
}
ptype := packetTypePrivateKey
contents := buf.Bytes()
privateKeyBytes := privateKeyBuf.Bytes()
if pk.IsSubkey {
ptype = packetTypePrivateSubkey
}
err = serializeHeader(w, ptype, len(contents)+len(privateKeyBytes)+2)
if err != nil {
return
}
_, err = w.Write(contents)
if err != nil {
return
}
_, err = w.Write(privateKeyBytes)
if err != nil {
return
}
checksum := mod64kHash(privateKeyBytes)
var checksumBytes [2]byte
checksumBytes[0] = byte(checksum >> 8)
checksumBytes[1] = byte(checksum)
_, err = w.Write(checksumBytes[:])
return
}
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
err := writeBig(w, priv.D)
if err != nil {
return err
}
err = writeBig(w, priv.Primes[1])
if err != nil {
return err
}
err = writeBig(w, priv.Primes[0])
if err != nil {
return err
}
return writeBig(w, priv.Precomputed.Qinv)
}
func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error {
return writeBig(w, priv.X)
}
func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error {
return writeBig(w, priv.X)
}
func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
return writeBig(w, priv.D)
}
// Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
if !pk.Encrypted {
return nil
}
key := make([]byte, pk.cipher.KeySize())
pk.s2k(key, passphrase)
block := pk.cipher.new(key)
cfb := cipher.NewCFBDecrypter(block, pk.iv)
data := make([]byte, len(pk.encryptedData))
cfb.XORKeyStream(data, pk.encryptedData)
if pk.sha1Checksum {
if len(data) < sha1.Size {
return errors.StructuralError("truncated private key data")
}
h := sha1.New()
h.Write(data[:len(data)-sha1.Size])
sum := h.Sum(nil)
if !bytes.Equal(sum, data[len(data)-sha1.Size:]) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-sha1.Size]
} else {
if len(data) < 2 {
return errors.StructuralError("truncated private key data")
}
var sum uint16
for i := 0; i < len(data)-2; i++ {
sum += uint16(data[i])
}
if data[len(data)-2] != uint8(sum>>8) ||
data[len(data)-1] != uint8(sum) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-2]
}
return pk.parsePrivateKey(data)
}
func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
switch pk.PublicKey.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly:
return pk.parseRSAPrivateKey(data)
case PubKeyAlgoDSA:
return pk.parseDSAPrivateKey(data)
case PubKeyAlgoElGamal:
return pk.parseElGamalPrivateKey(data)
case PubKeyAlgoECDSA:
return pk.parseECDSAPrivateKey(data)
}
panic("impossible")
}
func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) {
rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey)
rsaPriv := new(rsa.PrivateKey)
rsaPriv.PublicKey = *rsaPub
buf := bytes.NewBuffer(data)
d, _, err := readMPI(buf)
if err != nil {
return
}
p, _, err := readMPI(buf)
if err != nil {
return
}
q, _, err := readMPI(buf)
if err != nil {
return
}
rsaPriv.D = new(big.Int).SetBytes(d)
rsaPriv.Primes = make([]*big.Int, 2)
rsaPriv.Primes[0] = new(big.Int).SetBytes(p)
rsaPriv.Primes[1] = new(big.Int).SetBytes(q)
if err := rsaPriv.Validate(); err != nil {
return err
}
rsaPriv.Precompute()
pk.PrivateKey = rsaPriv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) {
dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey)
dsaPriv := new(dsa.PrivateKey)
dsaPriv.PublicKey = *dsaPub
buf := bytes.NewBuffer(data)
x, _, err := readMPI(buf)
if err != nil {
return
}
dsaPriv.X = new(big.Int).SetBytes(x)
pk.PrivateKey = dsaPriv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey)
priv := new(elgamal.PrivateKey)
priv.PublicKey = *pub
buf := bytes.NewBuffer(data)
x, _, err := readMPI(buf)
if err != nil {
return
}
priv.X = new(big.Int).SetBytes(x)
pk.PrivateKey = priv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
buf := bytes.NewBuffer(data)
d, _, err := readMPI(buf)
if err != nil {
return
}
pk.PrivateKey = &ecdsa.PrivateKey{
PublicKey: *ecdsaPub,
D: new(big.Int).SetBytes(d),
}
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"crypto/md5"
"crypto/rsa"
"encoding/binary"
"fmt"
"hash"
"io"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
)
// PublicKeyV3 represents older, version 3 public keys. These keys are less secure and
// should not be used for signing or encrypting. They are supported here only for
// parsing version 3 key material and validating signatures.
// See RFC 4880, section 5.5.2.
type PublicKeyV3 struct {
CreationTime time.Time
DaysToExpire uint16
PubKeyAlgo PublicKeyAlgorithm
PublicKey *rsa.PublicKey
Fingerprint [16]byte
KeyId uint64
IsSubkey bool
n, e parsedMPI
}
// newRSAPublicKeyV3 returns a PublicKey that wraps the given rsa.PublicKey.
// Included here for testing purposes only. RFC 4880, section 5.5.2:
// "an implementation MUST NOT generate a V3 key, but MAY accept it."
func newRSAPublicKeyV3(creationTime time.Time, pub *rsa.PublicKey) *PublicKeyV3 {
pk := &PublicKeyV3{
CreationTime: creationTime,
PublicKey: pub,
n: fromBig(pub.N),
e: fromBig(big.NewInt(int64(pub.E))),
}
pk.setFingerPrintAndKeyId()
return pk
}
func (pk *PublicKeyV3) parse(r io.Reader) (err error) {
// RFC 4880, section 5.5.2
var buf [8]byte
if _, err = readFull(r, buf[:]); err != nil {
return
}
if buf[0] < 2 || buf[0] > 3 {
return errors.UnsupportedError("public key version")
}
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0)
pk.DaysToExpire = binary.BigEndian.Uint16(buf[5:7])
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[7])
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
err = pk.parseRSA(r)
default:
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
}
if err != nil {
return
}
pk.setFingerPrintAndKeyId()
return
}
func (pk *PublicKeyV3) setFingerPrintAndKeyId() {
// RFC 4880, section 12.2
fingerPrint := md5.New()
fingerPrint.Write(pk.n.bytes)
fingerPrint.Write(pk.e.bytes)
fingerPrint.Sum(pk.Fingerprint[:0])
pk.KeyId = binary.BigEndian.Uint64(pk.n.bytes[len(pk.n.bytes)-8:])
}
// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKeyV3) parseRSA(r io.Reader) (err error) {
if pk.n.bytes, pk.n.bitLength, err = readMPI(r); err != nil {
return
}
if pk.e.bytes, pk.e.bitLength, err = readMPI(r); err != nil {
return
}
// RFC 4880 Section 12.2 requires the low 8 bytes of the
// modulus to form the key id.
if len(pk.n.bytes) < 8 {
return errors.StructuralError("v3 public key modulus is too short")
}
if len(pk.e.bytes) > 3 {
err = errors.UnsupportedError("large public exponent")
return
}
rsa := &rsa.PublicKey{N: new(big.Int).SetBytes(pk.n.bytes)}
for i := 0; i < len(pk.e.bytes); i++ {
rsa.E <<= 8
rsa.E |= int(pk.e.bytes[i])
}
pk.PublicKey = rsa
return
}
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKeyV3) SerializeSignaturePrefix(w io.Writer) {
var pLength uint16
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
pLength += 2 + uint16(len(pk.n.bytes))
pLength += 2 + uint16(len(pk.e.bytes))
default:
panic("unknown public key algorithm")
}
pLength += 6
w.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
return
}
func (pk *PublicKeyV3) Serialize(w io.Writer) (err error) {
length := 8 // 8 byte header
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
length += 2 + len(pk.n.bytes)
length += 2 + len(pk.e.bytes)
default:
panic("unknown public key algorithm")
}
packetType := packetTypePublicKey
if pk.IsSubkey {
packetType = packetTypePublicSubkey
}
if err = serializeHeader(w, packetType, length); err != nil {
return
}
return pk.serializeWithoutHeaders(w)
}
// serializeWithoutHeaders marshals the PublicKey to w in the form of an
// OpenPGP public key packet, not including the packet header.
func (pk *PublicKeyV3) serializeWithoutHeaders(w io.Writer) (err error) {
var buf [8]byte
// Version 3
buf[0] = 3
// Creation time
t := uint32(pk.CreationTime.Unix())
buf[1] = byte(t >> 24)
buf[2] = byte(t >> 16)
buf[3] = byte(t >> 8)
buf[4] = byte(t)
// Days to expire
buf[5] = byte(pk.DaysToExpire >> 8)
buf[6] = byte(pk.DaysToExpire)
// Public key algorithm
buf[7] = byte(pk.PubKeyAlgo)
if _, err = w.Write(buf[:]); err != nil {
return
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
return writeMPIs(w, pk.n, pk.e)
}
return errors.InvalidArgumentError("bad public-key algorithm")
}
// CanSign returns true iff this public key can generate signatures
func (pk *PublicKeyV3) CanSign() bool {
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly
}
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKeyV3) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
suffix := make([]byte, 5)
suffix[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix()))
signed.Write(suffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
if err = rsa.VerifyPKCS1v15(pk.PublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil {
return errors.SignatureError("RSA verification failure")
}
return
default:
// V3 public keys only support RSA.
panic("shouldn't happen")
}
}
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKeyV3) VerifyUserIdSignatureV3(id string, pub *PublicKeyV3, sig *SignatureV3) (err error) {
h, err := userIdSignatureV3Hash(id, pk, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// VerifyKeySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKeyV3) VerifyKeySignatureV3(signed *PublicKeyV3, sig *SignatureV3) (err error) {
h, err := keySignatureHash(pk, signed, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// userIdSignatureV3Hash returns a Hash of the message that needs to be signed
// to assert that pk is a valid key for id.
func userIdSignatureV3Hash(id string, pk signingKey, hfn crypto.Hash) (h hash.Hash, err error) {
if !hfn.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hfn.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
h.Write([]byte(id))
return
}
// KeyIdString returns the public key's fingerprint in capital hex
// (e.g. "6C7EE1B8621CC013").
func (pk *PublicKeyV3) KeyIdString() string {
return fmt.Sprintf("%X", pk.KeyId)
}
// KeyIdShortString returns the short form of public key's fingerprint
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013").
func (pk *PublicKeyV3) KeyIdShortString() string {
return fmt.Sprintf("%X", pk.KeyId&0xFFFFFFFF)
}
// BitLength returns the bit length for the given public key.
func (pk *PublicKeyV3) BitLength() (bitLength uint16, err error) {
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
bitLength = pk.n.bitLength
default:
err = errors.InvalidArgumentError("bad public-key algorithm")
}
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"golang.org/x/crypto/openpgp/errors"
"io"
)
// Reader reads packets from an io.Reader and allows packets to be 'unread' so
// that they result from the next call to Next.
type Reader struct {
q []Packet
readers []io.Reader
}
// New io.Readers are pushed when a compressed or encrypted packet is processed
// and recursively treated as a new source of packets. However, a carefully
// crafted packet can trigger an infinite recursive sequence of packets. See
// http://mumble.net/~campbell/misc/pgp-quine
// https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4402
// This constant limits the number of recursive packets that may be pushed.
const maxReaders = 32
// Next returns the most recently unread Packet, or reads another packet from
// the top-most io.Reader. Unknown packet types are skipped.
func (r *Reader) Next() (p Packet, err error) {
if len(r.q) > 0 {
p = r.q[len(r.q)-1]
r.q = r.q[:len(r.q)-1]
return
}
for len(r.readers) > 0 {
p, err = Read(r.readers[len(r.readers)-1])
if err == nil {
return
}
if err == io.EOF {
r.readers = r.readers[:len(r.readers)-1]
continue
}
if _, ok := err.(errors.UnknownPacketTypeError); !ok {
return nil, err
}
}
return nil, io.EOF
}
// Push causes the Reader to start reading from a new io.Reader. When an EOF
// error is seen from the new io.Reader, it is popped and the Reader continues
// to read from the next most recent io.Reader. Push returns a StructuralError
// if pushing the reader would exceed the maximum recursion level, otherwise it
// returns nil.
func (r *Reader) Push(reader io.Reader) (err error) {
if len(r.readers) >= maxReaders {
return errors.StructuralError("too many layers of packets")
}
r.readers = append(r.readers, reader)
return nil
}
// Unread causes the given Packet to be returned from the next call to Next.
func (r *Reader) Unread(p Packet) {
r.q = append(r.q, p)
}
func NewReader(r io.Reader) *Reader {
return &Reader{
q: nil,
readers: []io.Reader{r},
}
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"encoding/binary"
"fmt"
"io"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// SignatureV3 represents older version 3 signatures. These signatures are less secure
// than version 4 and should not be used to create new signatures. They are included
// here for backwards compatibility to read and validate with older key material.
// See RFC 4880, section 5.2.2.
type SignatureV3 struct {
SigType SignatureType
CreationTime time.Time
IssuerKeyId uint64
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
HashTag [2]byte
RSASignature parsedMPI
DSASigR, DSASigS parsedMPI
}
func (sig *SignatureV3) parse(r io.Reader) (err error) {
// RFC 4880, section 5.2.2
var buf [8]byte
if _, err = readFull(r, buf[:1]); err != nil {
return
}
if buf[0] < 2 || buf[0] > 3 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
if _, err = readFull(r, buf[:1]); err != nil {
return
}
if buf[0] != 5 {
err = errors.UnsupportedError(
"invalid hashed material length " + strconv.Itoa(int(buf[0])))
return
}
// Read hashed material: signature type + creation time
if _, err = readFull(r, buf[:5]); err != nil {
return
}
sig.SigType = SignatureType(buf[0])
t := binary.BigEndian.Uint32(buf[1:5])
sig.CreationTime = time.Unix(int64(t), 0)
// Eight-octet Key ID of signer.
if _, err = readFull(r, buf[:8]); err != nil {
return
}
sig.IssuerKeyId = binary.BigEndian.Uint64(buf[:])
// Public-key and hash algorithm
if _, err = readFull(r, buf[:2]); err != nil {
return
}
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[0])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
if sig.Hash, ok = s2k.HashIdToHash(buf[1]); !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
// Two-octet field holding left 16 bits of signed hash value.
if _, err = readFull(r, sig.HashTag[:2]); err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r)
case PubKeyAlgoDSA:
if sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r); err != nil {
return
}
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
default:
panic("unreachable")
}
return
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *SignatureV3) Serialize(w io.Writer) (err error) {
buf := make([]byte, 8)
// Write the sig type and creation time
buf[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(buf[1:5], uint32(sig.CreationTime.Unix()))
if _, err = w.Write(buf[:5]); err != nil {
return
}
// Write the issuer long key ID
binary.BigEndian.PutUint64(buf[:8], sig.IssuerKeyId)
if _, err = w.Write(buf[:8]); err != nil {
return
}
// Write public key algorithm, hash ID, and hash value
buf[0] = byte(sig.PubKeyAlgo)
hashId, ok := s2k.HashToHashId(sig.Hash)
if !ok {
return errors.UnsupportedError(fmt.Sprintf("hash function %v", sig.Hash))
}
buf[1] = hashId
copy(buf[2:4], sig.HashTag[:])
if _, err = w.Write(buf[:4]); err != nil {
return
}
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
err = writeMPIs(w, sig.RSASignature)
case PubKeyAlgoDSA:
err = writeMPIs(w, sig.DSASigR, sig.DSASigS)
default:
panic("impossible")
}
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/cipher"
"io"
"strconv"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// This is the largest session key that we'll support. Since no 512-bit cipher
// has even been seriously used, this is comfortably large.
const maxSessionKeySizeInBytes = 64
// SymmetricKeyEncrypted represents a passphrase protected session key. See RFC
// 4880, section 5.3.
type SymmetricKeyEncrypted struct {
CipherFunc CipherFunction
s2k func(out, in []byte)
encryptedKey []byte
}
const symmetricKeyEncryptedVersion = 4
func (ske *SymmetricKeyEncrypted) parse(r io.Reader) error {
// RFC 4880, section 5.3.
var buf [2]byte
if _, err := readFull(r, buf[:]); err != nil {
return err
}
if buf[0] != symmetricKeyEncryptedVersion {
return errors.UnsupportedError("SymmetricKeyEncrypted version")
}
ske.CipherFunc = CipherFunction(buf[1])
if ske.CipherFunc.KeySize() == 0 {
return errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(buf[1])))
}
var err error
ske.s2k, err = s2k.Parse(r)
if err != nil {
return err
}
encryptedKey := make([]byte, maxSessionKeySizeInBytes)
// The session key may follow. We just have to try and read to find
// out. If it exists then we limit it to maxSessionKeySizeInBytes.
n, err := readFull(r, encryptedKey)
if err != nil && err != io.ErrUnexpectedEOF {
return err
}
if n != 0 {
if n == maxSessionKeySizeInBytes {
return errors.UnsupportedError("oversized encrypted session key")
}
ske.encryptedKey = encryptedKey[:n]
}
return nil
}
// Decrypt attempts to decrypt an encrypted session key and returns the key and
// the cipher to use when decrypting a subsequent Symmetrically Encrypted Data
// packet.
func (ske *SymmetricKeyEncrypted) Decrypt(passphrase []byte) ([]byte, CipherFunction, error) {
key := make([]byte, ske.CipherFunc.KeySize())
ske.s2k(key, passphrase)
if len(ske.encryptedKey) == 0 {
return key, ske.CipherFunc, nil
}
// the IV is all zeros
iv := make([]byte, ske.CipherFunc.blockSize())
c := cipher.NewCFBDecrypter(ske.CipherFunc.new(key), iv)
plaintextKey := make([]byte, len(ske.encryptedKey))
c.XORKeyStream(plaintextKey, ske.encryptedKey)
cipherFunc := CipherFunction(plaintextKey[0])
if cipherFunc.blockSize() == 0 {
return nil, ske.CipherFunc, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc)))
}
plaintextKey = plaintextKey[1:]
if l, cipherKeySize := len(plaintextKey), cipherFunc.KeySize(); l != cipherFunc.KeySize() {
return nil, cipherFunc, errors.StructuralError("length of decrypted key (" + strconv.Itoa(l) + ") " +
"not equal to cipher keysize (" + strconv.Itoa(cipherKeySize) + ")")
}
return plaintextKey, cipherFunc, nil
}
// SerializeSymmetricKeyEncrypted serializes a symmetric key packet to w. The
// packet contains a random session key, encrypted by a key derived from the
// given passphrase. The session key is returned and must be passed to
// SerializeSymmetricallyEncrypted.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricKeyEncrypted(w io.Writer, passphrase []byte, config *Config) (key []byte, err error) {
cipherFunc := config.Cipher()
keySize := cipherFunc.KeySize()
if keySize == 0 {
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc)))
}
s2kBuf := new(bytes.Buffer)
keyEncryptingKey := make([]byte, keySize)
// s2k.Serialize salts and stretches the passphrase, and writes the
// resulting key to keyEncryptingKey and the s2k descriptor to s2kBuf.
err = s2k.Serialize(s2kBuf, keyEncryptingKey, config.Random(), passphrase, &s2k.Config{Hash: config.Hash(), S2KCount: config.PasswordHashIterations()})
if err != nil {
return
}
s2kBytes := s2kBuf.Bytes()
packetLength := 2 /* header */ + len(s2kBytes) + 1 /* cipher type */ + keySize
err = serializeHeader(w, packetTypeSymmetricKeyEncrypted, packetLength)
if err != nil {
return
}
var buf [2]byte
buf[0] = symmetricKeyEncryptedVersion
buf[1] = byte(cipherFunc)
_, err = w.Write(buf[:])
if err != nil {
return
}
_, err = w.Write(s2kBytes)
if err != nil {
return
}
sessionKey := make([]byte, keySize)
_, err = io.ReadFull(config.Random(), sessionKey)
if err != nil {
return
}
iv := make([]byte, cipherFunc.blockSize())
c := cipher.NewCFBEncrypter(cipherFunc.new(keyEncryptingKey), iv)
encryptedCipherAndKey := make([]byte, keySize+1)
c.XORKeyStream(encryptedCipherAndKey, buf[1:])
c.XORKeyStream(encryptedCipherAndKey[1:], sessionKey)
_, err = w.Write(encryptedCipherAndKey)
if err != nil {
return
}
key = sessionKey
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/cipher"
"crypto/sha1"
"crypto/subtle"
"golang.org/x/crypto/openpgp/errors"
"hash"
"io"
"strconv"
)
// SymmetricallyEncrypted represents a symmetrically encrypted byte string. The
// encrypted contents will consist of more OpenPGP packets. See RFC 4880,
// sections 5.7 and 5.13.
type SymmetricallyEncrypted struct {
MDC bool // true iff this is a type 18 packet and thus has an embedded MAC.
contents io.Reader
prefix []byte
}
const symmetricallyEncryptedVersion = 1
func (se *SymmetricallyEncrypted) parse(r io.Reader) error {
if se.MDC {
// See RFC 4880, section 5.13.
var buf [1]byte
_, err := readFull(r, buf[:])
if err != nil {
return err
}
if buf[0] != symmetricallyEncryptedVersion {
return errors.UnsupportedError("unknown SymmetricallyEncrypted version")
}
}
se.contents = r
return nil
}
// Decrypt returns a ReadCloser, from which the decrypted contents of the
// packet can be read. An incorrect key can, with high probability, be detected
// immediately and this will result in a KeyIncorrect error being returned.
func (se *SymmetricallyEncrypted) Decrypt(c CipherFunction, key []byte) (io.ReadCloser, error) {
keySize := c.KeySize()
if keySize == 0 {
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(c)))
}
if len(key) != keySize {
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted: incorrect key length")
}
if se.prefix == nil {
se.prefix = make([]byte, c.blockSize()+2)
_, err := readFull(se.contents, se.prefix)
if err != nil {
return nil, err
}
} else if len(se.prefix) != c.blockSize()+2 {
return nil, errors.InvalidArgumentError("can't try ciphers with different block lengths")
}
ocfbResync := OCFBResync
if se.MDC {
// MDC packets use a different form of OCFB mode.
ocfbResync = OCFBNoResync
}
s := NewOCFBDecrypter(c.new(key), se.prefix, ocfbResync)
if s == nil {
return nil, errors.ErrKeyIncorrect
}
plaintext := cipher.StreamReader{S: s, R: se.contents}
if se.MDC {
// MDC packets have an embedded hash that we need to check.
h := sha1.New()
h.Write(se.prefix)
return &seMDCReader{in: plaintext, h: h}, nil
}
// Otherwise, we just need to wrap plaintext so that it's a valid ReadCloser.
return seReader{plaintext}, nil
}
// seReader wraps an io.Reader with a no-op Close method.
type seReader struct {
in io.Reader
}
func (ser seReader) Read(buf []byte) (int, error) {
return ser.in.Read(buf)
}
func (ser seReader) Close() error {
return nil
}
const mdcTrailerSize = 1 /* tag byte */ + 1 /* length byte */ + sha1.Size
// An seMDCReader wraps an io.Reader, maintains a running hash and keeps hold
// of the most recent 22 bytes (mdcTrailerSize). Upon EOF, those bytes form an
// MDC packet containing a hash of the previous contents which is checked
// against the running hash. See RFC 4880, section 5.13.
type seMDCReader struct {
in io.Reader
h hash.Hash
trailer [mdcTrailerSize]byte
scratch [mdcTrailerSize]byte
trailerUsed int
error bool
eof bool
}
func (ser *seMDCReader) Read(buf []byte) (n int, err error) {
if ser.error {
err = io.ErrUnexpectedEOF
return
}
if ser.eof {
err = io.EOF
return
}
// If we haven't yet filled the trailer buffer then we must do that
// first.
for ser.trailerUsed < mdcTrailerSize {
n, err = ser.in.Read(ser.trailer[ser.trailerUsed:])
ser.trailerUsed += n
if err == io.EOF {
if ser.trailerUsed != mdcTrailerSize {
n = 0
err = io.ErrUnexpectedEOF
ser.error = true
return
}
ser.eof = true
n = 0
return
}
if err != nil {
n = 0
return
}
}
// If it's a short read then we read into a temporary buffer and shift
// the data into the caller's buffer.
if len(buf) <= mdcTrailerSize {
n, err = readFull(ser.in, ser.scratch[:len(buf)])
copy(buf, ser.trailer[:n])
ser.h.Write(buf[:n])
copy(ser.trailer[:], ser.trailer[n:])
copy(ser.trailer[mdcTrailerSize-n:], ser.scratch[:])
if n < len(buf) {
ser.eof = true
err = io.EOF
}
return
}
n, err = ser.in.Read(buf[mdcTrailerSize:])
copy(buf, ser.trailer[:])
ser.h.Write(buf[:n])
copy(ser.trailer[:], buf[n:])
if err == io.EOF {
ser.eof = true
}
return
}
// This is a new-format packet tag byte for a type 19 (MDC) packet.
const mdcPacketTagByte = byte(0x80) | 0x40 | 19
func (ser *seMDCReader) Close() error {
if ser.error {
return errors.SignatureError("error during reading")
}
for !ser.eof {
// We haven't seen EOF so we need to read to the end
var buf [1024]byte
_, err := ser.Read(buf[:])
if err == io.EOF {
break
}
if err != nil {
return errors.SignatureError("error during reading")
}
}
if ser.trailer[0] != mdcPacketTagByte || ser.trailer[1] != sha1.Size {
return errors.SignatureError("MDC packet not found")
}
ser.h.Write(ser.trailer[:2])
final := ser.h.Sum(nil)
if subtle.ConstantTimeCompare(final, ser.trailer[2:]) != 1 {
return errors.SignatureError("hash mismatch")
}
return nil
}
// An seMDCWriter writes through to an io.WriteCloser while maintains a running
// hash of the data written. On close, it emits an MDC packet containing the
// running hash.
type seMDCWriter struct {
w io.WriteCloser
h hash.Hash
}
func (w *seMDCWriter) Write(buf []byte) (n int, err error) {
w.h.Write(buf)
return w.w.Write(buf)
}
func (w *seMDCWriter) Close() (err error) {
var buf [mdcTrailerSize]byte
buf[0] = mdcPacketTagByte
buf[1] = sha1.Size
w.h.Write(buf[:2])
digest := w.h.Sum(nil)
copy(buf[2:], digest)
_, err = w.w.Write(buf[:])
if err != nil {
return
}
return w.w.Close()
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}
// SerializeSymmetricallyEncrypted serializes a symmetrically encrypted packet
// to w and returns a WriteCloser to which the to-be-encrypted packets can be
// written.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricallyEncrypted(w io.Writer, c CipherFunction, key []byte, config *Config) (contents io.WriteCloser, err error) {
if c.KeySize() != len(key) {
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted.Serialize: bad key length")
}
writeCloser := noOpCloser{w}
ciphertext, err := serializeStreamHeader(writeCloser, packetTypeSymmetricallyEncryptedMDC)
if err != nil {
return
}
_, err = ciphertext.Write([]byte{symmetricallyEncryptedVersion})
if err != nil {
return
}
block := c.new(key)
blockSize := block.BlockSize()
iv := make([]byte, blockSize)
_, err = config.Random().Read(iv)
if err != nil {
return
}
s, prefix := NewOCFBEncrypter(block, iv, OCFBNoResync)
_, err = ciphertext.Write(prefix)
if err != nil {
return
}
plaintext := cipher.StreamWriter{S: s, W: ciphertext}
h := sha1.New()
h.Write(iv)
h.Write(iv[blockSize-2:])
contents = &seMDCWriter{w: plaintext, h: h}
return
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"image"
"image/jpeg"
"io"
"io/ioutil"
)
const UserAttrImageSubpacket = 1
// UserAttribute is capable of storing other types of data about a user
// beyond name, email and a text comment. In practice, user attributes are typically used
// to store a signed thumbnail photo JPEG image of the user.
// See RFC 4880, section 5.12.
type UserAttribute struct {
Contents []*OpaqueSubpacket
}
// NewUserAttributePhoto creates a user attribute packet
// containing the given images.
func NewUserAttributePhoto(photos ...image.Image) (uat *UserAttribute, err error) {
uat = new(UserAttribute)
for _, photo := range photos {
var buf bytes.Buffer
// RFC 4880, Section 5.12.1.
data := []byte{
0x10, 0x00, // Little-endian image header length (16 bytes)
0x01, // Image header version 1
0x01, // JPEG
0, 0, 0, 0, // 12 reserved octets, must be all zero.
0, 0, 0, 0,
0, 0, 0, 0}
if _, err = buf.Write(data); err != nil {
return
}
if err = jpeg.Encode(&buf, photo, nil); err != nil {
return
}
uat.Contents = append(uat.Contents, &OpaqueSubpacket{
SubType: UserAttrImageSubpacket,
Contents: buf.Bytes()})
}
return
}
// NewUserAttribute creates a new user attribute packet containing the given subpackets.
func NewUserAttribute(contents ...*OpaqueSubpacket) *UserAttribute {
return &UserAttribute{Contents: contents}
}
func (uat *UserAttribute) parse(r io.Reader) (err error) {
// RFC 4880, section 5.13
b, err := ioutil.ReadAll(r)
if err != nil {
return
}
uat.Contents, err = OpaqueSubpackets(b)
return
}
// Serialize marshals the user attribute to w in the form of an OpenPGP packet, including
// header.
func (uat *UserAttribute) Serialize(w io.Writer) (err error) {
var buf bytes.Buffer
for _, sp := range uat.Contents {
sp.Serialize(&buf)
}
if err = serializeHeader(w, packetTypeUserAttribute, buf.Len()); err != nil {
return err
}
_, err = w.Write(buf.Bytes())
return
}
// ImageData returns zero or more byte slices, each containing
// JPEG File Interchange Format (JFIF), for each photo in the
// user attribute packet.
func (uat *UserAttribute) ImageData() (imageData [][]byte) {
for _, sp := range uat.Contents {
if sp.SubType == UserAttrImageSubpacket && len(sp.Contents) > 16 {
imageData = append(imageData, sp.Contents[16:])
}
}
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"io"
"io/ioutil"
"strings"
)
// UserId contains text that is intended to represent the name and email
// address of the key holder. See RFC 4880, section 5.11. By convention, this
// takes the form "Full Name (Comment) <email@example.com>"
type UserId struct {
Id string // By convention, this takes the form "Full Name (Comment) <email@example.com>" which is split out in the fields below.
Name, Comment, Email string
}
func hasInvalidCharacters(s string) bool {
for _, c := range s {
switch c {
case '(', ')', '<', '>', 0:
return true
}
}
return false
}
// NewUserId returns a UserId or nil if any of the arguments contain invalid
// characters. The invalid characters are '\x00', '(', ')', '<' and '>'
func NewUserId(name, comment, email string) *UserId {
// RFC 4880 doesn't deal with the structure of userid strings; the
// name, comment and email form is just a convention. However, there's
// no convention about escaping the metacharacters and GPG just refuses
// to create user ids where, say, the name contains a '('. We mirror
// this behaviour.
if hasInvalidCharacters(name) || hasInvalidCharacters(comment) || hasInvalidCharacters(email) {
return nil
}
uid := new(UserId)
uid.Name, uid.Comment, uid.Email = name, comment, email
uid.Id = name
if len(comment) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "("
uid.Id += comment
uid.Id += ")"
}
if len(email) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "<"
uid.Id += email
uid.Id += ">"
}
return uid
}
func (uid *UserId) parse(r io.Reader) (err error) {
// RFC 4880, section 5.11
b, err := ioutil.ReadAll(r)
if err != nil {
return
}
uid.Id = string(b)
uid.Name, uid.Comment, uid.Email = parseUserId(uid.Id)
return
}
// Serialize marshals uid to w in the form of an OpenPGP packet, including
// header.
func (uid *UserId) Serialize(w io.Writer) error {
err := serializeHeader(w, packetTypeUserId, len(uid.Id))
if err != nil {
return err
}
_, err = w.Write([]byte(uid.Id))
return err
}
// parseUserId extracts the name, comment and email from a user id string that
// is formatted as "Full Name (Comment) <email@example.com>".
func parseUserId(id string) (name, comment, email string) {
var n, c, e struct {
start, end int
}
var state int
for offset, rune := range id {
switch state {
case 0:
// Entering name
n.start = offset
state = 1
fallthrough
case 1:
// In name
if rune == '(' {
state = 2
n.end = offset
} else if rune == '<' {
state = 5
n.end = offset
}
case 2:
// Entering comment
c.start = offset
state = 3
fallthrough
case 3:
// In comment
if rune == ')' {
state = 4
c.end = offset
}
case 4:
// Between comment and email
if rune == '<' {
state = 5
}
case 5:
// Entering email
e.start = offset
state = 6
fallthrough
case 6:
// In email
if rune == '>' {
state = 7
e.end = offset
}
default:
// After email
}
}
switch state {
case 1:
// ended in the name
n.end = len(id)
case 3:
// ended in comment
c.end = len(id)
case 6:
// ended in email
e.end = len(id)
}
name = strings.TrimSpace(id[n.start:n.end])
comment = strings.TrimSpace(id[c.start:c.end])
email = strings.TrimSpace(id[e.start:e.end])
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1.
package s2k // import "golang.org/x/crypto/openpgp/s2k"
import (
"crypto"
"hash"
"io"
"strconv"
"golang.org/x/crypto/openpgp/errors"
)
// Config collects configuration parameters for s2k key-stretching
// transformatioms. A nil *Config is valid and results in all default
// values. Currently, Config is used only by the Serialize function in
// this package.
type Config struct {
// Hash is the default hash function to be used. If
// nil, SHA1 is used.
Hash crypto.Hash
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 1024 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 65536 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. When set, it is strongly encrouraged to
// use a value that is at least 65536. See RFC 4880 Section
// 3.7.1.3.
S2KCount int
}
func (c *Config) hash() crypto.Hash {
if c == nil || uint(c.Hash) == 0 {
// SHA1 is the historical default in this package.
return crypto.SHA1
}
return c.Hash
}
func (c *Config) encodedCount() uint8 {
if c == nil || c.S2KCount == 0 {
return 96 // The common case. Correspoding to 65536
}
i := c.S2KCount
switch {
// Behave like GPG. Should we make 65536 the lowest value used?
case i < 1024:
i = 1024
case i > 65011712:
i = 65011712
}
return encodeCount(i)
}
// encodeCount converts an iterative "count" in the range 1024 to
// 65011712, inclusive, to an encoded count. The return value is the
// octet that is actually stored in the GPG file. encodeCount panics
// if i is not in the above range (encodedCount above takes care to
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
func encodeCount(i int) uint8 {
if i < 1024 || i > 65011712 {
panic("count arg i outside the required range")
}
for encoded := 0; encoded < 256; encoded++ {
count := decodeCount(uint8(encoded))
if count >= i {
return uint8(encoded)
}
}
return 255
}
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
// the encoded octet c.
func decodeCount(c uint8) int {
return (16 + int(c&15)) << (uint32(c>>4) + 6)
}
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) {
Salted(out, h, in, nil)
}
var zero [1]byte
// Salted writes to out the result of computing the Salted S2K function (RFC
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
h.Write(salt)
h.Write(in)
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Iterated writes to out the result of computing the Iterated and Salted S2K
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
// salt and iteration count.
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
combined := make([]byte, len(in)+len(salt))
copy(combined, salt)
copy(combined[len(salt):], in)
if count < len(combined) {
count = len(combined)
}
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
written := 0
for written < count {
if written+len(combined) > count {
todo := count - written
h.Write(combined[:todo])
written = count
} else {
h.Write(combined)
written += len(combined)
}
}
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Parse reads a binary specification for a string-to-key transformation from r
// and returns a function which performs that transform.
func Parse(r io.Reader) (f func(out, in []byte), err error) {
var buf [9]byte
_, err = io.ReadFull(r, buf[:2])
if err != nil {
return
}
hash, ok := HashIdToHash(buf[1])
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
}
if !hash.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash)))
}
h := hash.New()
switch buf[0] {
case 0:
f := func(out, in []byte) {
Simple(out, h, in)
}
return f, nil
case 1:
_, err = io.ReadFull(r, buf[:8])
if err != nil {
return
}
f := func(out, in []byte) {
Salted(out, h, in, buf[:8])
}
return f, nil
case 3:
_, err = io.ReadFull(r, buf[:9])
if err != nil {
return
}
count := decodeCount(buf[8])
f := func(out, in []byte) {
Iterated(out, h, in, buf[:8], count)
}
return f, nil
}
return nil, errors.UnsupportedError("S2K function")
}
// Serialize salts and stretches the given passphrase and writes the
// resulting key into key. It also serializes an S2K descriptor to
// w. The key stretching can be configured with c, which may be
// nil. In that case, sensible defaults will be used.
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
var buf [11]byte
buf[0] = 3 /* iterated and salted */
buf[1], _ = HashToHashId(c.hash())
salt := buf[2:10]
if _, err := io.ReadFull(rand, salt); err != nil {
return err
}
encodedCount := c.encodedCount()
count := decodeCount(encodedCount)
buf[10] = encodedCount
if _, err := w.Write(buf[:]); err != nil {
return err
}
Iterated(key, c.hash().New(), passphrase, salt, count)
return nil
}
// hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
// Go's crypto.Hash type. See RFC 4880, section 9.4.
var hashToHashIdMapping = []struct {
id byte
hash crypto.Hash
name string
}{
{1, crypto.MD5, "MD5"},
{2, crypto.SHA1, "SHA1"},
{3, crypto.RIPEMD160, "RIPEMD160"},
{8, crypto.SHA256, "SHA256"},
{9, crypto.SHA384, "SHA384"},
{10, crypto.SHA512, "SHA512"},
{11, crypto.SHA224, "SHA224"},
}
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
// hash id.
func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
for _, m := range hashToHashIdMapping {
if m.id == id {
return m.hash, true
}
}
return 0, false
}
// HashIdToString returns the name of the hash function corresponding to the
// given OpenPGP hash id.
func HashIdToString(id byte) (name string, ok bool) {
for _, m := range hashToHashIdMapping {
if m.id == id {
return m.name, true
}
}
return "", false
}
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
func HashToHashId(h crypto.Hash) (id byte, ok bool) {
for _, m := range hashToHashIdMapping {
if m.hash == h {
return m.id, true
}
}
return 0, false
}
......@@ -368,11 +368,19 @@ github.com/yudai/golcs
# go.uber.org/atomic v1.5.1
## explicit
go.uber.org/atomic
# golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550
# golang.org/x/crypto v0.0.0-20200406173513-056763e48d71
## explicit
golang.org/x/crypto/cast5
golang.org/x/crypto/ed25519
golang.org/x/crypto/ed25519/internal/edwards25519
golang.org/x/crypto/md4
golang.org/x/crypto/openpgp
golang.org/x/crypto/openpgp/armor
golang.org/x/crypto/openpgp/clearsign
golang.org/x/crypto/openpgp/elgamal
golang.org/x/crypto/openpgp/errors
golang.org/x/crypto/openpgp/packet
golang.org/x/crypto/openpgp/s2k
golang.org/x/crypto/pbkdf2
golang.org/x/crypto/ripemd160
# golang.org/x/lint v0.0.0-20191125180803-fdd1cda4f05f
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment