Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
N
nexpie-grafana-theme
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Registry
Registry
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Kornkitt Poolsup
nexpie-grafana-theme
Commits
db9a8bf0
Unverified
Commit
db9a8bf0
authored
Jan 28, 2021
by
Ryan McKinley
Committed by
GitHub
Jan 28, 2021
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Transform: improve the "outer join" performance/behavior (#30407)
parent
3390c6a8
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
1038 additions
and
919 deletions
+1038
-919
packages/grafana-data/src/transformations/index.ts
+1
-1
packages/grafana-data/src/transformations/transformers/ensureColumns.test.ts
+69
-39
packages/grafana-data/src/transformations/transformers/joinDataFrames.test.ts
+302
-0
packages/grafana-data/src/transformations/transformers/joinDataFrames.ts
+313
-0
packages/grafana-data/src/transformations/transformers/seriesToColumns.test.ts
+320
-228
packages/grafana-data/src/transformations/transformers/seriesToColumns.ts
+18
-135
packages/grafana-ui/src/components/GraphNG/GraphNG.tsx
+15
-2
packages/grafana-ui/src/components/GraphNG/utils.test.ts
+0
-334
packages/grafana-ui/src/components/GraphNG/utils.ts
+0
-180
No files found.
packages/grafana-data/src/transformations/index.ts
View file @
db9a8bf0
...
...
@@ -11,4 +11,4 @@ export {
}
from
'./standardTransformersRegistry'
;
export
{
RegexpOrNamesMatcherOptions
,
ByNamesMatcherOptions
,
ByNamesMatcherMode
}
from
'./matchers/nameMatcher'
;
export
{
RenameByRegexTransformerOptions
}
from
'./transformers/renameByRegex'
;
export
{
outerJoinDataFrames
}
from
'./transformers/
seriesToColumn
s'
;
export
{
outerJoinDataFrames
}
from
'./transformers/
joinDataFrame
s'
;
packages/grafana-data/src/transformations/transformers/ensureColumns.test.ts
View file @
db9a8bf0
...
...
@@ -49,52 +49,82 @@ describe('ensureColumns transformer', () => {
const
frame
=
filtered
[
0
];
expect
(
frame
.
fields
.
length
).
toEqual
(
5
);
expect
(
filtered
[
0
]).
toEqual
(
toDataFrame
({
fields
:
[
{
name
:
'TheTime'
,
type
:
'time'
,
config
:
{},
values
:
[
1000
,
2000
],
labels
:
undefined
,
expect
(
filtered
[
0
]).
toMatchInlineSnapshot
(
`
Object {
"fields": Array [
Object {
"config": Object {},
"name": "TheTime",
"state": Object {
"displayName": "TheTime",
},
"type": "time",
"values": Array [
1000,
2000,
],
},
{
name
:
'A'
,
type
:
'number'
,
config
:
{},
values
:
[
1
,
100
],
labels
:
{},
Object {
"config": Object {},
"labels": Object {},
"name": "A",
"state": Object {
"displayName": "A",
},
"type": "number",
"values": Array [
1,
100,
],
},
{
name
:
'B'
,
type
:
'number'
,
config
:
{},
values
:
[
2
,
200
],
labels
:
{},
Object {
"config": Object {},
"labels": Object {},
"name": "B",
"state": Object {
"displayName": "B",
},
"type": "number",
"values": Array [
2,
200,
],
},
{
name
:
'C'
,
type
:
'number'
,
config
:
{},
values
:
[
3
,
300
],
labels
:
{},
Object {
"config": Object {},
"labels": Object {},
"name": "C",
"state": Object {
"displayName": "C",
},
"type": "number",
"values": Array [
3,
300,
],
},
{
name
:
'D'
,
type
:
'string'
,
config
:
{},
values
:
[
'first'
,
'second'
],
labels
:
{},
Object {
"config": Object {},
"labels": Object {},
"name": "D",
"state": Object {
"displayName": "D",
},
"type": "string",
"values": Array [
"first",
"second",
],
},
],
meta
:
{
transformations
:
[
'ensureColumns'
],
"length": 2,
"meta": Object {
"transformations": Array [
"ensureColumns",
],
},
name
:
undefined
,
refId
:
undefined
,
})
);
}
`
);
});
});
...
...
packages/grafana-data/src/transformations/transformers/joinDataFrames.test.ts
0 → 100644
View file @
db9a8bf0
import
{
toDataFrame
}
from
'../../dataframe/processDataFrame'
;
import
{
FieldType
}
from
'../../types/dataFrame'
;
import
{
mockTransformationsRegistry
}
from
'../../utils/tests/mockTransformationsRegistry'
;
import
{
ArrayVector
}
from
'../../vector'
;
import
{
calculateFieldTransformer
}
from
'./calculateField'
;
import
{
isLikelyAscendingVector
,
outerJoinDataFrames
}
from
'./joinDataFrames'
;
describe
(
'align frames'
,
()
=>
{
beforeAll
(()
=>
{
mockTransformationsRegistry
([
calculateFieldTransformer
]);
});
it
(
'by first time field'
,
()
=>
{
const
series1
=
toDataFrame
({
fields
:
[
{
name
:
'TheTime'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
]
},
{
name
:
'A'
,
type
:
FieldType
.
number
,
values
:
[
1
,
100
]
},
],
});
const
series2
=
toDataFrame
({
fields
:
[
{
name
:
'_time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
1500
,
2000
]
},
{
name
:
'A'
,
type
:
FieldType
.
number
,
values
:
[
2
,
20
,
200
]
},
{
name
:
'B'
,
type
:
FieldType
.
number
,
values
:
[
3
,
30
,
300
]
},
{
name
:
'C'
,
type
:
FieldType
.
string
,
values
:
[
'first'
,
'second'
,
'third'
]
},
],
});
const
out
=
outerJoinDataFrames
({
frames
:
[
series1
,
series2
]
})
!
;
expect
(
out
.
fields
.
map
((
f
)
=>
({
name
:
f
.
name
,
values
:
f
.
values
.
toArray
(),
}))
).
toMatchInlineSnapshot
(
`
Array [
Object {
"name": "TheTime",
"values": Array [
1000,
1500,
2000,
],
},
Object {
"name": "A",
"values": Array [
1,
undefined,
100,
],
},
Object {
"name": "A",
"values": Array [
2,
20,
200,
],
},
Object {
"name": "B",
"values": Array [
3,
30,
300,
],
},
Object {
"name": "C",
"values": Array [
"first",
"second",
"third",
],
},
]
`
);
});
it
(
'unsorted input keep indexes'
,
()
=>
{
//----------
const
series1
=
toDataFrame
({
fields
:
[
{
name
:
'TheTime'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
1500
]
},
{
name
:
'A1'
,
type
:
FieldType
.
number
,
values
:
[
1
,
2
,
15
]
},
],
});
const
series3
=
toDataFrame
({
fields
:
[
{
name
:
'Time'
,
type
:
FieldType
.
time
,
values
:
[
2000
,
1000
]
},
{
name
:
'A2'
,
type
:
FieldType
.
number
,
values
:
[
2
,
1
]
},
],
});
let
out
=
outerJoinDataFrames
({
frames
:
[
series1
,
series3
],
keepOriginIndices
:
true
})
!
;
expect
(
out
.
fields
.
map
((
f
)
=>
({
name
:
f
.
name
,
values
:
f
.
values
.
toArray
(),
state
:
f
.
state
,
}))
).
toMatchInlineSnapshot
(
`
Array [
Object {
"name": "TheTime",
"state": Object {
"displayName": "TheTime",
"origin": Object {
"fieldIndex": 0,
"frameIndex": 0,
},
},
"values": Array [
1000,
1500,
2000,
],
},
Object {
"name": "A1",
"state": Object {
"displayName": "A1",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 0,
},
},
"values": Array [
1,
15,
2,
],
},
Object {
"name": "A2",
"state": Object {
"displayName": "A2",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 1,
},
},
"values": Array [
1,
undefined,
2,
],
},
]
`
);
// Fast path still adds origin indecies
out
=
outerJoinDataFrames
({
frames
:
[
series1
],
keepOriginIndices
:
true
})
!
;
expect
(
out
.
fields
.
map
((
f
)
=>
({
name
:
f
.
name
,
state
:
f
.
state
,
}))
).
toMatchInlineSnapshot
(
`
Array [
Object {
"name": "TheTime",
"state": Object {
"displayName": "TheTime",
"origin": Object {
"fieldIndex": 0,
"frameIndex": 0,
},
},
},
Object {
"name": "A1",
"state": Object {
"displayName": "A1",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 0,
},
},
},
]
`
);
});
it
(
'sort single frame'
,
()
=>
{
const
series1
=
toDataFrame
({
fields
:
[
{
name
:
'TheTime'
,
type
:
FieldType
.
time
,
values
:
[
6000
,
2000
,
1500
]
},
{
name
:
'A1'
,
type
:
FieldType
.
number
,
values
:
[
1
,
22
,
15
]
},
],
});
const
out
=
outerJoinDataFrames
({
frames
:
[
series1
],
enforceSort
:
true
,
keepOriginIndices
:
true
})
!
;
expect
(
out
.
fields
.
map
((
f
)
=>
({
name
:
f
.
name
,
values
:
f
.
values
.
toArray
(),
}))
).
toMatchInlineSnapshot
(
`
Array [
Object {
"name": "TheTime",
"values": Array [
1500,
2000,
6000,
],
},
Object {
"name": "A1",
"values": Array [
15,
22,
1,
],
},
]
`
);
});
it
(
'supports duplicate times'
,
()
=>
{
//----------
// NOTE!!!
// * ideally we would *keep* dupicate fields
//----------
const
series1
=
toDataFrame
({
fields
:
[
{
name
:
'TheTime'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
]
},
{
name
:
'A'
,
type
:
FieldType
.
number
,
values
:
[
1
,
100
]
},
],
});
const
series3
=
toDataFrame
({
fields
:
[
{
name
:
'Time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
1000
,
1000
]
},
{
name
:
'A'
,
type
:
FieldType
.
number
,
values
:
[
2
,
20
,
200
]
},
],
});
const
out
=
outerJoinDataFrames
({
frames
:
[
series1
,
series3
]
})
!
;
expect
(
out
.
fields
.
map
((
f
)
=>
({
name
:
f
.
name
,
values
:
f
.
values
.
toArray
(),
}))
).
toMatchInlineSnapshot
(
`
Array [
Object {
"name": "TheTime",
"values": Array [
1000,
2000,
],
},
Object {
"name": "A",
"values": Array [
1,
100,
],
},
Object {
"name": "A",
"values": Array [
200,
undefined,
],
},
]
`
);
});
describe
(
'check ascending data'
,
()
=>
{
it
(
'simple ascending'
,
()
=>
{
const
v
=
new
ArrayVector
([
1
,
2
,
3
,
4
,
5
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeTruthy
();
});
it
(
'simple ascending with null'
,
()
=>
{
const
v
=
new
ArrayVector
([
null
,
2
,
3
,
4
,
null
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeTruthy
();
});
it
(
'single value'
,
()
=>
{
const
v
=
new
ArrayVector
([
null
,
null
,
null
,
4
,
null
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeTruthy
();
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([
4
]))).
toBeTruthy
();
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([]))).
toBeTruthy
();
});
it
(
'middle values'
,
()
=>
{
const
v
=
new
ArrayVector
([
null
,
null
,
5
,
4
,
null
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeFalsy
();
});
it
(
'decending'
,
()
=>
{
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([
7
,
6
,
null
]))).
toBeFalsy
();
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([
7
,
8
,
6
]))).
toBeFalsy
();
});
});
});
packages/grafana-data/src/transformations/transformers/joinDataFrames.ts
0 → 100644
View file @
db9a8bf0
import
{
DataFrame
,
Field
,
FieldMatcher
,
FieldType
,
Vector
}
from
'../../types'
;
import
{
ArrayVector
}
from
'../../vector'
;
import
{
fieldMatchers
}
from
'../matchers'
;
import
{
FieldMatcherID
}
from
'../matchers/ids'
;
import
{
getTimeField
,
sortDataFrame
}
from
'../../dataframe'
;
import
{
getFieldDisplayName
}
from
'../../field'
;
export
function
pickBestJoinField
(
data
:
DataFrame
[]):
FieldMatcher
{
const
{
timeField
}
=
getTimeField
(
data
[
0
]);
if
(
timeField
)
{
return
fieldMatchers
.
get
(
FieldMatcherID
.
firstTimeField
).
get
({});
}
let
common
:
string
[]
=
[];
for
(
const
f
of
data
[
0
].
fields
)
{
if
(
f
.
type
===
FieldType
.
number
)
{
common
.
push
(
f
.
name
);
}
}
for
(
let
i
=
1
;
i
<
data
.
length
;
i
++
)
{
const
names
:
string
[]
=
[];
for
(
const
f
of
data
[
0
].
fields
)
{
if
(
f
.
type
===
FieldType
.
number
)
{
names
.
push
(
f
.
name
);
}
}
common
=
common
.
filter
((
v
)
=>
!
names
.
includes
(
v
));
}
return
fieldMatchers
.
get
(
FieldMatcherID
.
byName
).
get
(
common
[
0
]);
}
/**
* @alpha
*/
export
interface
JoinOptions
{
/**
* The input fields
*/
frames
:
DataFrame
[];
/**
* The field to join -- frames that do not have this field will be droppped
*/
joinBy
?:
FieldMatcher
;
/**
* Optionally filter the non-join fields
*/
keep
?:
FieldMatcher
;
/**
* When the result is a single frame, this will to a quick check to see if the values are sorted,
* and sort if necessary. If the first/last values are in order the whole vector is assumed to be
* sorted
*/
enforceSort
?:
boolean
;
/**
* @internal -- used when we need to keep a reference to the original frame/field index
*/
keepOriginIndices
?:
boolean
;
}
function
getJoinMatcher
(
options
:
JoinOptions
):
FieldMatcher
{
return
options
.
joinBy
??
pickBestJoinField
(
options
.
frames
);
}
/**
* This will return a single frame joined by the first matching field. When a join field is not specified,
* the default will use the first time field
*/
export
function
outerJoinDataFrames
(
options
:
JoinOptions
):
DataFrame
|
undefined
{
if
(
!
options
.
frames
?.
length
)
{
return
undefined
;
}
if
(
options
.
frames
.
length
===
1
)
{
let
frame
=
options
.
frames
[
0
];
if
(
options
.
keepOriginIndices
)
{
frame
=
{
...
frame
,
fields
:
frame
.
fields
.
map
((
f
,
fieldIndex
)
=>
{
const
copy
=
{
...
f
};
const
origin
=
{
frameIndex
:
0
,
fieldIndex
,
};
if
(
copy
.
state
)
{
copy
.
state
.
origin
=
origin
;
}
else
{
copy
.
state
=
{
origin
};
}
return
copy
;
}),
};
}
if
(
options
.
enforceSort
)
{
const
joinFieldMatcher
=
getJoinMatcher
(
options
);
const
joinIndex
=
frame
.
fields
.
findIndex
((
f
)
=>
joinFieldMatcher
(
f
,
frame
,
options
.
frames
));
if
(
joinIndex
>=
0
)
{
if
(
!
isLikelyAscendingVector
(
frame
.
fields
[
joinIndex
].
values
))
{
return
sortDataFrame
(
frame
,
joinIndex
);
}
}
}
return
frame
;
}
const
nullModes
:
JoinNullMode
[][]
=
[];
const
allData
:
AlignedData
[]
=
[];
const
originalFields
:
Field
[]
=
[];
const
joinFieldMatcher
=
getJoinMatcher
(
options
);
for
(
let
frameIndex
=
0
;
frameIndex
<
options
.
frames
.
length
;
frameIndex
++
)
{
const
frame
=
options
.
frames
[
frameIndex
];
if
(
!
frame
||
!
frame
.
fields
?.
length
)
{
continue
;
// skip the frame
}
const
nullModesFrame
:
JoinNullMode
[]
=
[
NULL_REMOVE
];
let
join
:
Field
|
undefined
=
undefined
;
let
fields
:
Field
[]
=
[];
for
(
let
fieldIndex
=
0
;
fieldIndex
<
frame
.
fields
.
length
;
fieldIndex
++
)
{
const
field
=
frame
.
fields
[
fieldIndex
];
getFieldDisplayName
(
field
,
frame
,
options
.
frames
);
// cache displayName in state
if
(
!
join
&&
joinFieldMatcher
(
field
,
frame
,
options
.
frames
))
{
join
=
field
;
}
else
{
if
(
options
.
keep
&&
!
options
.
keep
(
field
,
frame
,
options
.
frames
))
{
continue
;
// skip field
}
// Support the standard graph span nulls field config
nullModesFrame
.
push
(
field
.
config
.
custom
?.
spanNulls
?
NULL_REMOVE
:
NULL_EXPAND
);
let
labels
=
field
.
labels
??
{};
if
(
frame
.
name
)
{
labels
=
{
...
labels
,
name
:
frame
.
name
};
}
fields
.
push
({
...
field
,
labels
,
// add the name label from frame
});
}
if
(
options
.
keepOriginIndices
)
{
field
.
state
!
.
origin
=
{
frameIndex
,
fieldIndex
,
};
}
}
if
(
!
join
)
{
continue
;
// skip the frame
}
if
(
originalFields
.
length
===
0
)
{
originalFields
.
push
(
join
);
// first join field
}
nullModes
.
push
(
nullModesFrame
);
const
a
:
AlignedData
=
[
join
.
values
.
toArray
()];
//
for
(
const
field
of
fields
)
{
a
.
push
(
field
.
values
.
toArray
());
originalFields
.
push
(
field
);
}
allData
.
push
(
a
);
}
const
joined
=
join
(
allData
,
nullModes
);
return
{
// ...options.data[0], // keep name, meta?
length
:
joined
[
0
].
length
,
fields
:
originalFields
.
map
((
f
,
index
)
=>
({
...
f
,
values
:
new
ArrayVector
(
joined
[
index
]),
})),
};
}
//--------------------------------------------------------------------------------
// Below here is copied from uplot (MIT License)
// https://github.com/leeoniya/uPlot/blob/master/src/utils.js#L325
// This avoids needing to import uplot into the data package
//--------------------------------------------------------------------------------
// Copied from uplot
type
AlignedData
=
[
number
[],
...
Array
<
Array
<
number
|
null
>>
];
// nullModes
const
NULL_REMOVE
=
0
;
// nulls are converted to undefined (e.g. for spanGaps: true)
const
NULL_RETAIN
=
1
;
// nulls are retained, with alignment artifacts set to undefined (default)
const
NULL_EXPAND
=
2
;
// nulls are expanded to include any adjacent alignment artifacts
type
JoinNullMode
=
number
;
// NULL_IGNORE | NULL_RETAIN | NULL_EXPAND;
// sets undefined values to nulls when adjacent to existing nulls (minesweeper)
function
nullExpand
(
yVals
:
Array
<
number
|
null
>
,
nullIdxs
:
number
[],
alignedLen
:
number
)
{
for
(
let
i
=
0
,
xi
,
lastNullIdx
=
-
1
;
i
<
nullIdxs
.
length
;
i
++
)
{
let
nullIdx
=
nullIdxs
[
i
];
if
(
nullIdx
>
lastNullIdx
)
{
xi
=
nullIdx
-
1
;
while
(
xi
>=
0
&&
yVals
[
xi
]
==
null
)
{
yVals
[
xi
--
]
=
null
;
}
xi
=
nullIdx
+
1
;
while
(
xi
<
alignedLen
&&
yVals
[
xi
]
==
null
)
{
yVals
[(
lastNullIdx
=
xi
++
)]
=
null
;
}
}
}
}
// nullModes is a tables-matched array indicating how to treat nulls in each series
function
join
(
tables
:
AlignedData
[],
nullModes
:
number
[][])
{
const
xVals
=
new
Set
<
number
>
();
for
(
let
ti
=
0
;
ti
<
tables
.
length
;
ti
++
)
{
let
t
=
tables
[
ti
];
let
xs
=
t
[
0
];
let
len
=
xs
.
length
;
for
(
let
i
=
0
;
i
<
len
;
i
++
)
{
xVals
.
add
(
xs
[
i
]);
}
}
let
data
=
[
Array
.
from
(
xVals
).
sort
((
a
,
b
)
=>
a
-
b
)];
let
alignedLen
=
data
[
0
].
length
;
let
xIdxs
=
new
Map
();
for
(
let
i
=
0
;
i
<
alignedLen
;
i
++
)
{
xIdxs
.
set
(
data
[
0
][
i
],
i
);
}
for
(
let
ti
=
0
;
ti
<
tables
.
length
;
ti
++
)
{
let
t
=
tables
[
ti
];
let
xs
=
t
[
0
];
for
(
let
si
=
1
;
si
<
t
.
length
;
si
++
)
{
let
ys
=
t
[
si
];
let
yVals
=
Array
(
alignedLen
).
fill
(
undefined
);
let
nullMode
=
nullModes
?
nullModes
[
ti
][
si
]
:
NULL_RETAIN
;
let
nullIdxs
=
[];
for
(
let
i
=
0
;
i
<
ys
.
length
;
i
++
)
{
let
yVal
=
ys
[
i
];
let
alignedIdx
=
xIdxs
.
get
(
xs
[
i
]);
if
(
yVal
==
null
)
{
if
(
nullMode
!==
NULL_REMOVE
)
{
yVals
[
alignedIdx
]
=
yVal
;
if
(
nullMode
===
NULL_EXPAND
)
{
nullIdxs
.
push
(
alignedIdx
);
}
}
}
else
{
yVals
[
alignedIdx
]
=
yVal
;
}
}
nullExpand
(
yVals
,
nullIdxs
,
alignedLen
);
data
.
push
(
yVals
);
}
}
return
data
;
}
// Quick test if the first and last points look to be ascending
// Only exported for tests
export
function
isLikelyAscendingVector
(
data
:
Vector
):
boolean
{
let
first
:
any
=
undefined
;
for
(
let
idx
=
0
;
idx
<
data
.
length
;
idx
++
)
{
const
v
=
data
.
get
(
idx
);
if
(
v
!=
null
)
{
if
(
first
!=
null
)
{
if
(
first
>
v
)
{
return
false
;
// descending
}
break
;
}
first
=
v
;
}
}
let
idx
=
data
.
length
-
1
;
while
(
idx
>=
0
)
{
const
v
=
data
.
get
(
idx
--
);
if
(
v
!=
null
)
{
if
(
first
>
v
)
{
return
false
;
}
return
true
;
}
}
return
true
;
// only one non-null point
}
packages/grafana-data/src/transformations/transformers/seriesToColumns.test.ts
View file @
db9a8bf0
...
...
@@ -2,7 +2,6 @@ import {
ArrayVector
,
DataTransformerConfig
,
DataTransformerID
,
Field
,
FieldType
,
toDataFrame
,
transformDataFrame
,
...
...
@@ -45,58 +44,102 @@ describe('SeriesToColumns Transformer', () => {
(
received
)
=>
{
const
data
=
received
[
0
];
const
filtered
=
data
[
0
];
expect
(
filtered
.
fields
).
toEqual
([
{
name
:
'time'
,
state
:
{
displayName
:
'time'
,
expect
(
filtered
.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"displayName": "time",
},
"type": "time",
"values": Array [
1000,
3000,
4000,
5000,
6000,
7000,
],
},
type
:
FieldType
.
time
,
values
:
new
ArrayVector
([
1000
,
3000
,
4000
,
5000
,
6000
,
7000
]),
config
:
{},
labels
:
undefined
,
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature even'
,
Object {
"config": Object {},
"labels": Object {
"name": "even",
},
"name": "temperature",
"state": Object {
"displayName": "even temperature",
},
"type": "number",
"values": Array [
undefined,
10.3,
10.4,
10.5,
10.6,
undefined,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
null
,
10.3
,
10.4
,
10.5
,
10.6
,
null
]),
config
:
{},
labels
:
{
name
:
'even'
},
},
{
name
:
'humidity'
,
state
:
{
displayName
:
'humidity even'
,
Object {
"config": Object {},
"labels": Object {
"name": "even",
},
"name": "humidity",
"state": Object {
"displayName": "even humidity",
},
"type": "number",
"values": Array [
undefined,
10000.3,
10000.4,
10000.5,
10000.6,
undefined,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
null
,
10000.3
,
10000.4
,
10000.5
,
10000.6
,
null
]),
config
:
{},
labels
:
{
name
:
'even'
},
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature odd'
,
Object {
"config": Object {},
"labels": Object {
"name": "odd",
},
"name": "temperature",
"state": Object {
"displayName": "odd temperature",
},
"type": "number",
"values": Array [
11.1,
11.3,
undefined,
11.5,
undefined,
11.7,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
11.1
,
11.3
,
null
,
11.5
,
null
,
11.7
]),
config
:
{},
labels
:
{
name
:
'odd'
},
},
{
name
:
'humidity'
,
state
:
{
displayName
:
'humidity odd'
,
Object {
"config": Object {},
"labels": Object {
"name": "odd",
},
"name": "humidity",
"state": Object {
"displayName": "odd humidity",
},
"type": "number",
"values": Array [
11000.1,
11000.3,
undefined,
11000.5,
undefined,
11000.7,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
11000.1
,
11000.3
,
null
,
11000.5
,
null
,
11000.7
]),
config
:
{},
labels
:
{
name
:
'odd'
},
},
]);
]
`
);
}
);
});
...
...
@@ -113,58 +156,7 @@ describe('SeriesToColumns Transformer', () => {
(
received
)
=>
{
const
data
=
received
[
0
];
const
filtered
=
data
[
0
];
expect
(
filtered
.
fields
).
toEqual
([
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature'
,
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
10.3
,
10.4
,
10.5
,
10.6
,
11.1
,
11.3
,
11.5
,
11.7
]),
config
:
{},
labels
:
undefined
,
},
{
name
:
'time'
,
state
:
{
displayName
:
'time even'
,
},
type
:
FieldType
.
time
,
values
:
new
ArrayVector
([
3000
,
4000
,
5000
,
6000
,
null
,
null
,
null
,
null
]),
config
:
{},
labels
:
{
name
:
'even'
},
},
{
name
:
'humidity'
,
state
:
{
displayName
:
'humidity even'
,
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
10000.3
,
10000.4
,
10000.5
,
10000.6
,
null
,
null
,
null
,
null
]),
config
:
{},
labels
:
{
name
:
'even'
},
},
{
name
:
'time'
,
state
:
{
displayName
:
'time odd'
,
},
type
:
FieldType
.
time
,
values
:
new
ArrayVector
([
null
,
null
,
null
,
null
,
1000
,
3000
,
5000
,
7000
]),
config
:
{},
labels
:
{
name
:
'odd'
},
},
{
name
:
'humidity'
,
state
:
{
displayName
:
'humidity odd'
,
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
null
,
null
,
null
,
null
,
11000.1
,
11000.3
,
11000.5
,
11000.7
]),
config
:
{},
labels
:
{
name
:
'odd'
},
},
]);
expect
(
filtered
.
fields
).
toMatchInlineSnapshot
(
`Array []`
);
}
);
});
...
...
@@ -185,58 +177,102 @@ describe('SeriesToColumns Transformer', () => {
(
received
)
=>
{
const
data
=
received
[
0
];
const
filtered
=
data
[
0
];
expect
(
filtered
.
fields
).
toEqual
([
{
name
:
'time'
,
state
:
{
displayName
:
'time'
,
expect
(
filtered
.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"displayName": "time",
},
"type": "time",
"values": Array [
1000,
3000,
4000,
5000,
6000,
7000,
],
},
type
:
FieldType
.
time
,
values
:
new
ArrayVector
([
1000
,
3000
,
4000
,
5000
,
6000
,
7000
]),
config
:
{},
labels
:
undefined
,
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature even'
,
Object {
"config": Object {},
"labels": Object {
"name": "even",
},
"name": "temperature",
"state": Object {
"displayName": "even temperature",
},
"type": "number",
"values": Array [
undefined,
10.3,
10.4,
10.5,
10.6,
undefined,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
null
,
10.3
,
10.4
,
10.5
,
10.6
,
null
]),
config
:
{},
labels
:
{
name
:
'even'
},
},
{
name
:
'humidity'
,
state
:
{
displayName
:
'humidity even'
,
Object {
"config": Object {},
"labels": Object {
"name": "even",
},
"name": "humidity",
"state": Object {
"displayName": "even humidity",
},
"type": "number",
"values": Array [
undefined,
10000.3,
10000.4,
10000.5,
10000.6,
undefined,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
null
,
10000.3
,
10000.4
,
10000.5
,
10000.6
,
null
]),
config
:
{},
labels
:
{
name
:
'even'
},
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature odd'
,
Object {
"config": Object {},
"labels": Object {
"name": "odd",
},
"name": "temperature",
"state": Object {
"displayName": "odd temperature",
},
"type": "number",
"values": Array [
11.1,
11.3,
undefined,
11.5,
undefined,
11.7,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
11.1
,
11.3
,
null
,
11.5
,
null
,
11.7
]),
config
:
{},
labels
:
{
name
:
'odd'
},
},
{
name
:
'humidity'
,
state
:
{
displayName
:
'humidity odd'
,
Object {
"config": Object {},
"labels": Object {
"name": "odd",
},
"name": "humidity",
"state": Object {
"displayName": "odd humidity",
},
"type": "number",
"values": Array [
11000.1,
11000.3,
undefined,
11000.5,
undefined,
11000.7,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
11000.1
,
11000.3
,
null
,
11000.5
,
null
,
11000.7
]),
config
:
{},
labels
:
{
name
:
'odd'
},
},
]);
]
`
);
}
);
});
...
...
@@ -270,40 +306,58 @@ describe('SeriesToColumns Transformer', () => {
(
received
)
=>
{
const
data
=
received
[
0
];
const
filtered
=
data
[
0
];
const
expected
:
Field
[]
=
[
{
name
:
'time'
,
state
:
{
displayName
:
'time'
,
expect
(
filtered
.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"displayName": "time",
},
"type": "time",
"values": Array [
1000,
2000,
3000,
4000,
],
},
type
:
FieldType
.
time
,
values
:
new
ArrayVector
([
1000
,
2000
,
3000
,
4000
]),
config
:
{},
labels
:
undefined
,
},
{
name
:
'temperature'
,
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
1
,
3
,
5
,
7
]),
config
:
{},
state
:
{
displayName
:
'temperature temperature'
,
Object {
"config": Object {},
"labels": Object {
"name": "temperature",
},
"name": "temperature",
"state": Object {
"displayName": "temperature temperature",
},
"type": "number",
"values": Array [
1,
3,
5,
7,
],
},
labels
:
{
name
:
'temperature'
},
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature B'
,
Object {
"config": Object {},
"labels": Object {
"name": "B",
},
"name": "temperature",
"state": Object {
"displayName": "B temperature",
},
"type": "number",
"values": Array [
2,
4,
6,
8,
],
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
2
,
4
,
6
,
8
]),
config
:
{},
labels
:
{
name
:
'B'
},
},
];
expect
(
filtered
.
fields
).
toEqual
(
expected
);
]
`
);
}
);
});
...
...
@@ -341,31 +395,55 @@ describe('SeriesToColumns Transformer', () => {
await
expect
(
transformDataFrame
([
cfg
],
[
frame1
,
frame2
,
frame3
])).
toEmitValuesWith
((
received
)
=>
{
const
data
=
received
[
0
];
const
filtered
=
data
[
0
];
expect
(
filtered
.
fields
).
toEqual
([
{
name
:
'time'
,
state
:
{
displayName
:
'time'
},
type
:
FieldType
.
time
,
values
:
new
ArrayVector
([
1
,
2
,
3
]),
config
:
{},
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature A'
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
10
,
11
,
12
]),
config
:
{},
labels
:
{
name
:
'A'
},
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature C'
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
20
,
22
,
24
]),
config
:
{},
labels
:
{
name
:
'C'
},
},
]);
expect
(
filtered
.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"displayName": "time",
},
"type": "time",
"values": Array [
1,
2,
3,
],
},
Object {
"config": Object {},
"labels": Object {
"name": "A",
},
"name": "temperature",
"state": Object {
"displayName": "A temperature",
},
"type": "number",
"values": Array [
10,
11,
12,
],
},
Object {
"config": Object {},
"labels": Object {
"name": "C",
},
"name": "temperature",
"state": Object {
"displayName": "C temperature",
},
"type": "number",
"values": Array [
20,
22,
24,
],
},
]
`
);
});
});
...
...
@@ -394,31 +472,45 @@ describe('SeriesToColumns Transformer', () => {
await
expect
(
transformDataFrame
([
cfg
],
[
frame1
,
frame2
])).
toEmitValuesWith
((
received
)
=>
{
const
data
=
received
[
0
];
const
filtered
=
data
[
0
];
expect
(
filtered
.
fields
).
toEqual
([
{
name
:
'time'
,
state
:
{
displayName
:
'time'
},
type
:
FieldType
.
time
,
values
:
new
ArrayVector
([
1
]),
config
:
{},
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature 1'
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
10
]),
config
:
{},
labels
:
{},
},
{
name
:
'temperature'
,
state
:
{
displayName
:
'temperature 2'
},
type
:
FieldType
.
number
,
values
:
new
ArrayVector
([
20
]),
config
:
{},
labels
:
{},
},
]);
expect
(
filtered
.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"displayName": "time",
},
"type": "time",
"values": Array [
1,
],
},
Object {
"config": Object {},
"labels": Object {},
"name": "temperature",
"state": Object {
"displayName": "temperature",
},
"type": "number",
"values": Array [
10,
],
},
Object {
"config": Object {},
"labels": Object {},
"name": "temperature",
"state": Object {
"displayName": "temperature",
},
"type": "number",
"values": Array [
20,
],
},
]
`
);
});
});
});
packages/grafana-data/src/transformations/transformers/seriesToColumns.ts
View file @
db9a8bf0
import
{
map
}
from
'rxjs/operators'
;
import
{
Data
Frame
,
DataTransformerInfo
,
Field
}
from
'../../types'
;
import
{
Data
TransformerInfo
,
FieldMatcher
}
from
'../../types'
;
import
{
DataTransformerID
}
from
'./ids'
;
import
{
MutableDataFrame
}
from
'../../dataframe
'
;
import
{
ArrayVector
}
from
'../../vector
'
;
import
{
getFieldDisplayName
}
from
'../../field/fieldState
'
;
import
{
outerJoinDataFrames
}
from
'./joinDataFrames
'
;
import
{
fieldMatchers
}
from
'../matchers
'
;
import
{
FieldMatcherID
}
from
'../matchers/ids
'
;
export
interface
SeriesToColumnsOptions
{
byField
?:
string
;
byField
?:
string
;
// empty will pick the field automatically
}
const
DEFAULT_KEY_FIELD
=
'Time'
;
export
const
seriesToColumnsTransformer
:
DataTransformerInfo
<
SeriesToColumnsOptions
>
=
{
id
:
DataTransformerID
.
seriesToColumns
,
name
:
'Series as columns'
,
name
:
'Series as columns'
,
// Called 'Outer join' in the UI!
description
:
'Groups series by field and returns values as columns'
,
defaultOptions
:
{
byField
:
DEFAULT_KEY_FIELD
,
byField
:
undefined
,
//
DEFAULT_KEY_FIELD,
},
operator
:
(
options
)
=>
(
source
)
=>
source
.
pipe
(
map
((
data
)
=>
{
return
outerJoinDataFrames
(
data
,
options
);
if
(
data
.
length
>
1
)
{
let
joinBy
:
FieldMatcher
|
undefined
=
undefined
;
if
(
options
.
byField
)
{
joinBy
=
fieldMatchers
.
get
(
FieldMatcherID
.
byName
).
get
(
options
.
byField
);
}
const
joined
=
outerJoinDataFrames
({
frames
:
data
,
joinBy
});
if
(
joined
)
{
return
[
joined
];
}
}
return
data
;
})
),
};
/**
* @internal
*/
export
function
outerJoinDataFrames
(
data
:
DataFrame
[],
options
:
SeriesToColumnsOptions
)
{
const
keyFieldMatch
=
options
.
byField
||
DEFAULT_KEY_FIELD
;
const
allFields
:
FieldsToProcess
[]
=
[];
for
(
let
frameIndex
=
0
;
frameIndex
<
data
.
length
;
frameIndex
++
)
{
const
frame
=
data
[
frameIndex
];
const
keyField
=
findKeyField
(
frame
,
keyFieldMatch
);
if
(
!
keyField
)
{
continue
;
}
for
(
let
fieldIndex
=
0
;
fieldIndex
<
frame
.
fields
.
length
;
fieldIndex
++
)
{
const
sourceField
=
frame
.
fields
[
fieldIndex
];
if
(
sourceField
===
keyField
)
{
continue
;
}
let
labels
=
sourceField
.
labels
??
{};
if
(
frame
.
name
)
{
labels
=
{
...
labels
,
name
:
frame
.
name
};
}
allFields
.
push
({
keyField
,
sourceField
,
newField
:
{
...
sourceField
,
state
:
null
,
values
:
new
ArrayVector
([]),
labels
,
},
});
}
}
// if no key fields or more than one value field
if
(
allFields
.
length
<=
1
)
{
return
data
;
}
const
resultFrame
=
new
MutableDataFrame
();
resultFrame
.
addField
({
...
allFields
[
0
].
keyField
,
values
:
new
ArrayVector
([]),
});
for
(
const
item
of
allFields
)
{
item
.
newField
=
resultFrame
.
addField
(
item
.
newField
);
}
const
keyFieldTitle
=
getFieldDisplayName
(
resultFrame
.
fields
[
0
],
resultFrame
);
const
byKeyField
:
{
[
key
:
string
]:
{
[
key
:
string
]:
any
}
}
=
{};
/*
this loop creates a dictionary object that groups the key fields values
{
"key field first value as string" : {
"key field name": key field first value,
"other series name": other series value
"other series n name": other series n value
},
"key field n value as string" : {
"key field name": key field n value,
"other series name": other series value
"other series n name": other series n value
}
}
*/
for
(
let
fieldIndex
=
0
;
fieldIndex
<
allFields
.
length
;
fieldIndex
++
)
{
const
{
sourceField
,
keyField
,
newField
}
=
allFields
[
fieldIndex
];
const
newFieldTitle
=
getFieldDisplayName
(
newField
,
resultFrame
);
for
(
let
valueIndex
=
0
;
valueIndex
<
sourceField
.
values
.
length
;
valueIndex
++
)
{
const
value
=
sourceField
.
values
.
get
(
valueIndex
);
const
keyValue
=
keyField
.
values
.
get
(
valueIndex
);
if
(
!
byKeyField
[
keyValue
])
{
byKeyField
[
keyValue
]
=
{
[
newFieldTitle
]:
value
,
[
keyFieldTitle
]:
keyValue
};
}
else
{
byKeyField
[
keyValue
][
newFieldTitle
]
=
value
;
}
}
}
const
keyValueStrings
=
Object
.
keys
(
byKeyField
);
for
(
let
rowIndex
=
0
;
rowIndex
<
keyValueStrings
.
length
;
rowIndex
++
)
{
const
keyValueAsString
=
keyValueStrings
[
rowIndex
];
for
(
let
fieldIndex
=
0
;
fieldIndex
<
resultFrame
.
fields
.
length
;
fieldIndex
++
)
{
const
field
=
resultFrame
.
fields
[
fieldIndex
];
const
otherColumnName
=
getFieldDisplayName
(
field
,
resultFrame
);
const
value
=
byKeyField
[
keyValueAsString
][
otherColumnName
]
??
null
;
field
.
values
.
add
(
value
);
}
}
return
[
resultFrame
];
}
function
findKeyField
(
frame
:
DataFrame
,
matchTitle
:
string
):
Field
|
null
{
for
(
let
fieldIndex
=
0
;
fieldIndex
<
frame
.
fields
.
length
;
fieldIndex
++
)
{
const
field
=
frame
.
fields
[
fieldIndex
];
if
(
matchTitle
===
getFieldDisplayName
(
field
))
{
return
field
;
}
}
return
null
;
}
interface
FieldsToProcess
{
newField
:
Field
;
sourceField
:
Field
;
keyField
:
Field
;
}
packages/grafana-ui/src/components/GraphNG/GraphNG.tsx
View file @
db9a8bf0
...
...
@@ -5,14 +5,16 @@ import {
DisplayValue
,
FieldConfig
,
FieldMatcher
,
FieldMatcherID
,
fieldMatchers
,
fieldReducers
,
FieldType
,
formattedValueToString
,
getFieldDisplayName
,
outerJoinDataFrames
,
reduceField
,
TimeRange
,
}
from
'@grafana/data'
;
import
{
joinDataFrames
}
from
'./utils'
;
import
{
useTheme
}
from
'../../themes'
;
import
{
UPlotChart
}
from
'../uPlot/Plot'
;
import
{
PlotProps
}
from
'../uPlot/types'
;
...
...
@@ -64,7 +66,16 @@ export const GraphNG: React.FC<GraphNGProps> = ({
const
theme
=
useTheme
();
const
hasLegend
=
useRef
(
legend
&&
legend
.
displayMode
!==
LegendDisplayMode
.
Hidden
);
const
frame
=
useMemo
(()
=>
joinDataFrames
(
data
,
fields
),
[
data
,
fields
]);
const
frame
=
useMemo
(()
=>
{
// Default to timeseries config
if
(
!
fields
)
{
fields
=
{
x
:
fieldMatchers
.
get
(
FieldMatcherID
.
firstTimeField
).
get
({}),
y
:
fieldMatchers
.
get
(
FieldMatcherID
.
numeric
).
get
({}),
};
}
return
outerJoinDataFrames
({
frames
:
data
,
joinBy
:
fields
.
x
,
keep
:
fields
.
y
,
keepOriginIndices
:
true
});
},
[
data
,
fields
]);
const
compareFrames
=
useCallback
((
a
?:
DataFrame
|
null
,
b
?:
DataFrame
|
null
)
=>
{
if
(
a
&&
b
)
{
...
...
@@ -107,6 +118,7 @@ export const GraphNG: React.FC<GraphNGProps> = ({
// X is the first field in the aligned frame
const
xField
=
frame
.
fields
[
0
];
let
seriesIndex
=
0
;
if
(
xField
.
type
===
FieldType
.
time
)
{
builder
.
addScale
({
...
...
@@ -150,6 +162,7 @@ export const GraphNG: React.FC<GraphNGProps> = ({
if
(
field
===
xField
||
field
.
type
!==
FieldType
.
number
)
{
continue
;
}
field
.
state
!
.
seriesIndex
=
seriesIndex
++
;
const
fmt
=
field
.
display
??
defaultFormatter
;
const
scaleKey
=
config
.
unit
||
FIXED_UNIT
;
...
...
packages/grafana-ui/src/components/GraphNG/utils.test.ts
deleted
100644 → 0
View file @
3390c6a8
import
{
ArrayVector
,
DataFrame
,
FieldType
,
toDataFrame
}
from
'@grafana/data'
;
import
{
joinDataFrames
,
isLikelyAscendingVector
}
from
'./utils'
;
describe
(
'joinDataFrames'
,
()
=>
{
describe
(
'joined frame'
,
()
=>
{
it
(
'should align multiple data frames into one data frame'
,
()
=>
{
const
data
:
DataFrame
[]
=
[
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature A'
,
type
:
FieldType
.
number
,
values
:
[
1
,
3
,
5
,
7
]
},
],
}),
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature B'
,
type
:
FieldType
.
number
,
values
:
[
0
,
2
,
6
,
7
]
},
],
}),
];
const
joined
=
joinDataFrames
(
data
);
expect
(
joined
?.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"origin": undefined,
},
"type": "time",
"values": Array [
1000,
2000,
3000,
4000,
],
},
Object {
"config": Object {},
"name": "temperature A",
"state": Object {
"displayName": "temperature A",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 0,
},
"seriesIndex": 0,
},
"type": "number",
"values": Array [
1,
3,
5,
7,
],
},
Object {
"config": Object {},
"name": "temperature B",
"state": Object {
"displayName": "temperature B",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 1,
},
"seriesIndex": 1,
},
"type": "number",
"values": Array [
0,
2,
6,
7,
],
},
]
`
);
});
it
(
'should align multiple data frames into one data frame but only keep first time field'
,
()
=>
{
const
data
:
DataFrame
[]
=
[
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature'
,
type
:
FieldType
.
number
,
values
:
[
1
,
3
,
5
,
7
]
},
],
}),
toDataFrame
({
fields
:
[
{
name
:
'time2'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature B'
,
type
:
FieldType
.
number
,
values
:
[
0
,
2
,
6
,
7
]
},
],
}),
];
const
aligned
=
joinDataFrames
(
data
);
expect
(
aligned
?.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"origin": undefined,
},
"type": "time",
"values": Array [
1000,
2000,
3000,
4000,
],
},
Object {
"config": Object {},
"name": "temperature",
"state": Object {
"displayName": "temperature",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 0,
},
"seriesIndex": 0,
},
"type": "number",
"values": Array [
1,
3,
5,
7,
],
},
Object {
"config": Object {},
"name": "temperature B",
"state": Object {
"displayName": "temperature B",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 1,
},
"seriesIndex": 1,
},
"type": "number",
"values": Array [
0,
2,
6,
7,
],
},
]
`
);
});
it
(
'should align multiple data frames into one data frame and skip non-numeric fields'
,
()
=>
{
const
data
:
DataFrame
[]
=
[
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature'
,
type
:
FieldType
.
number
,
values
:
[
1
,
3
,
5
,
7
]
},
{
name
:
'state'
,
type
:
FieldType
.
string
,
values
:
[
'on'
,
'off'
,
'off'
,
'on'
]
},
],
}),
];
const
aligned
=
joinDataFrames
(
data
);
expect
(
aligned
?.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"origin": undefined,
},
"type": "time",
"values": Array [
1000,
2000,
3000,
4000,
],
},
Object {
"config": Object {},
"name": "temperature",
"state": Object {
"displayName": "temperature",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 0,
},
"seriesIndex": 0,
},
"type": "number",
"values": Array [
1,
3,
5,
7,
],
},
]
`
);
});
it
(
'should align multiple data frames into one data frame and skip non-numeric fields'
,
()
=>
{
const
data
:
DataFrame
[]
=
[
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature'
,
type
:
FieldType
.
number
,
values
:
[
1
,
3
,
5
,
7
]
},
{
name
:
'state'
,
type
:
FieldType
.
string
,
values
:
[
'on'
,
'off'
,
'off'
,
'on'
]
},
],
}),
];
const
aligned
=
joinDataFrames
(
data
);
expect
(
aligned
?.
fields
).
toMatchInlineSnapshot
(
`
Array [
Object {
"config": Object {},
"name": "time",
"state": Object {
"origin": undefined,
},
"type": "time",
"values": Array [
1000,
2000,
3000,
4000,
],
},
Object {
"config": Object {},
"name": "temperature",
"state": Object {
"displayName": "temperature",
"origin": Object {
"fieldIndex": 1,
"frameIndex": 0,
},
"seriesIndex": 0,
},
"type": "number",
"values": Array [
1,
3,
5,
7,
],
},
]
`
);
});
});
describe
(
'getDataFrameFieldIndex'
,
()
=>
{
let
aligned
:
DataFrame
|
null
;
beforeAll
(()
=>
{
const
data
:
DataFrame
[]
=
[
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature A'
,
type
:
FieldType
.
number
,
values
:
[
1
,
3
,
5
,
7
]
},
],
}),
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature B'
,
type
:
FieldType
.
number
,
values
:
[
0
,
2
,
6
,
7
]
},
{
name
:
'humidity'
,
type
:
FieldType
.
number
,
values
:
[
0
,
2
,
6
,
7
]
},
],
}),
toDataFrame
({
fields
:
[
{
name
:
'time'
,
type
:
FieldType
.
time
,
values
:
[
1000
,
2000
,
3000
,
4000
]
},
{
name
:
'temperature C'
,
type
:
FieldType
.
number
,
values
:
[
0
,
2
,
6
,
7
]
},
],
}),
];
aligned
=
joinDataFrames
(
data
);
});
it
.
each
`
yDim | index
${
1
}
|
${[
0
,
1
]}
${
2
}
|
${[
1
,
1
]}
${
3
}
|
${[
1
,
2
]}
${
4
}
|
${[
2
,
1
]}
`
(
'should return correct index for yDim'
,
({
yDim
,
index
})
=>
{
const
[
frameIndex
,
fieldIndex
]
=
index
;
expect
(
aligned
?.
fields
[
yDim
].
state
?.
origin
).
toEqual
({
frameIndex
,
fieldIndex
,
});
});
});
describe
(
'check ascending data'
,
()
=>
{
it
(
'simple ascending'
,
()
=>
{
const
v
=
new
ArrayVector
([
1
,
2
,
3
,
4
,
5
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeTruthy
();
});
it
(
'simple ascending with null'
,
()
=>
{
const
v
=
new
ArrayVector
([
null
,
2
,
3
,
4
,
null
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeTruthy
();
});
it
(
'single value'
,
()
=>
{
const
v
=
new
ArrayVector
([
null
,
null
,
null
,
4
,
null
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeTruthy
();
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([
4
]))).
toBeTruthy
();
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([]))).
toBeTruthy
();
});
it
(
'middle values'
,
()
=>
{
const
v
=
new
ArrayVector
([
null
,
null
,
5
,
4
,
null
]);
expect
(
isLikelyAscendingVector
(
v
)).
toBeFalsy
();
});
it
(
'decending'
,
()
=>
{
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([
7
,
6
,
null
]))).
toBeFalsy
();
expect
(
isLikelyAscendingVector
(
new
ArrayVector
([
7
,
8
,
6
]))).
toBeFalsy
();
});
});
});
packages/grafana-ui/src/components/GraphNG/utils.ts
deleted
100755 → 0
View file @
3390c6a8
import
{
DataFrame
,
ArrayVector
,
NullValueMode
,
getFieldDisplayName
,
Field
,
fieldMatchers
,
FieldMatcherID
,
FieldType
,
FieldState
,
DataFrameFieldIndex
,
sortDataFrame
,
Vector
,
}
from
'@grafana/data'
;
import
uPlot
,
{
AlignedData
,
JoinNullMode
}
from
'uplot'
;
import
{
XYFieldMatchers
}
from
'./GraphNG'
;
// the results ofter passing though data
export
interface
XYDimensionFields
{
x
:
Field
;
// independent axis (cause)
y
:
Field
[];
// dependent axis (effect)
}
export
function
mapDimesions
(
match
:
XYFieldMatchers
,
frame
:
DataFrame
,
frames
?:
DataFrame
[]):
XYDimensionFields
{
let
x
:
Field
|
undefined
;
const
y
:
Field
[]
=
[];
for
(
const
field
of
frame
.
fields
)
{
if
(
!
x
&&
match
.
x
(
field
,
frame
,
frames
??
[]))
{
x
=
field
;
}
if
(
match
.
y
(
field
,
frame
,
frames
??
[]))
{
y
.
push
(
field
);
}
}
return
{
x
:
x
as
Field
,
y
};
}
/**
* Returns a single DataFrame with:
* - A shared time column
* - only numeric fields
*
* @alpha
*/
export
function
joinDataFrames
(
frames
:
DataFrame
[],
fields
?:
XYFieldMatchers
):
DataFrame
|
null
{
const
valuesFromFrames
:
AlignedData
[]
=
[];
const
sourceFields
:
Field
[]
=
[];
const
sourceFieldsRefs
:
Record
<
number
,
DataFrameFieldIndex
>
=
{};
const
nullModes
:
JoinNullMode
[][]
=
[];
// Default to timeseries config
if
(
!
fields
)
{
fields
=
{
x
:
fieldMatchers
.
get
(
FieldMatcherID
.
firstTimeField
).
get
({}),
y
:
fieldMatchers
.
get
(
FieldMatcherID
.
numeric
).
get
({}),
};
}
for
(
let
frameIndex
=
0
;
frameIndex
<
frames
.
length
;
frameIndex
++
)
{
let
frame
=
frames
[
frameIndex
];
let
dims
=
mapDimesions
(
fields
,
frame
,
frames
);
if
(
!
(
dims
.
x
&&
dims
.
y
.
length
))
{
continue
;
// no numeric and no time fields
}
// Quick check that x is ascending order
if
(
!
isLikelyAscendingVector
(
dims
.
x
.
values
))
{
const
xIndex
=
frame
.
fields
.
indexOf
(
dims
.
x
);
frame
=
sortDataFrame
(
frame
,
xIndex
);
dims
=
mapDimesions
(
fields
,
frame
,
frames
);
}
let
nullModesFrame
:
JoinNullMode
[]
=
[
0
];
// Add the first X axis
if
(
!
sourceFields
.
length
)
{
sourceFields
.
push
(
dims
.
x
);
}
const
alignedData
:
AlignedData
=
[
dims
.
x
.
values
.
toArray
(),
// The x axis (time)
];
for
(
let
fieldIndex
=
0
;
fieldIndex
<
frame
.
fields
.
length
;
fieldIndex
++
)
{
const
field
=
frame
.
fields
[
fieldIndex
];
if
(
!
fields
.
y
(
field
,
frame
,
frames
))
{
continue
;
}
let
values
=
field
.
values
.
toArray
();
let
joinNullMode
=
field
.
config
.
custom
?.
spanNulls
?
0
:
2
;
if
(
field
.
config
.
nullValueMode
===
NullValueMode
.
AsZero
)
{
values
=
values
.
map
((
v
)
=>
(
v
===
null
?
0
:
v
));
joinNullMode
=
0
;
}
sourceFieldsRefs
[
sourceFields
.
length
]
=
{
frameIndex
,
fieldIndex
};
alignedData
.
push
(
values
);
nullModesFrame
.
push
(
joinNullMode
);
// This will cache an appropriate field name in the field state
getFieldDisplayName
(
field
,
frame
,
frames
);
sourceFields
.
push
(
field
);
}
valuesFromFrames
.
push
(
alignedData
);
nullModes
.
push
(
nullModesFrame
);
}
if
(
valuesFromFrames
.
length
===
0
)
{
return
null
;
}
// do the actual alignment (outerJoin on the first arrays)
let
joinedData
=
uPlot
.
join
(
valuesFromFrames
,
nullModes
);
if
(
joinedData
!
.
length
!==
sourceFields
.
length
)
{
throw
new
Error
(
'outerJoinValues lost a field?'
);
}
let
seriesIdx
=
0
;
// Replace the values from the outer-join field
return
{
...
frames
[
0
],
length
:
joinedData
!
[
0
].
length
,
fields
:
joinedData
!
.
map
((
vals
,
idx
)
=>
{
let
state
:
FieldState
=
{
...
sourceFields
[
idx
].
state
,
origin
:
sourceFieldsRefs
[
idx
],
};
if
(
sourceFields
[
idx
].
type
!==
FieldType
.
time
)
{
state
.
seriesIndex
=
seriesIdx
;
seriesIdx
++
;
}
return
{
...
sourceFields
[
idx
],
state
,
values
:
new
ArrayVector
(
vals
),
};
}),
};
}
// Quick test if the first and last points look to be ascending
export
function
isLikelyAscendingVector
(
data
:
Vector
):
boolean
{
let
first
:
any
=
undefined
;
for
(
let
idx
=
0
;
idx
<
data
.
length
;
idx
++
)
{
const
v
=
data
.
get
(
idx
);
if
(
v
!=
null
)
{
if
(
first
!=
null
)
{
if
(
first
>
v
)
{
return
false
;
// descending
}
break
;
}
first
=
v
;
}
}
let
idx
=
data
.
length
-
1
;
while
(
idx
>=
0
)
{
const
v
=
data
.
get
(
idx
--
);
if
(
v
!=
null
)
{
if
(
first
>
v
)
{
return
false
;
}
return
true
;
}
}
return
true
;
// only one non-null point
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment