Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
N
nexpie-grafana-theme
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Registry
Registry
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Kornkitt Poolsup
nexpie-grafana-theme
Commits
e84ff248
Commit
e84ff248
authored
Sep 11, 2017
by
bergquist
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
adds codahale to vendor
parent
a234e894
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
645 additions
and
0 deletions
+645
-0
vendor/github.com/codahale/hdrhistogram/LICENSE
+21
-0
vendor/github.com/codahale/hdrhistogram/README.md
+15
-0
vendor/github.com/codahale/hdrhistogram/hdr.go
+564
-0
vendor/github.com/codahale/hdrhistogram/window.go
+45
-0
No files found.
vendor/github.com/codahale/hdrhistogram/LICENSE
0 → 100644
View file @
e84ff248
The MIT License (MIT)
Copyright (c) 2014 Coda Hale
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
vendor/github.com/codahale/hdrhistogram/README.md
0 → 100644
View file @
e84ff248
hdrhistogram
============
[
![Build Status
](
https://travis-ci.org/codahale/hdrhistogram.png?branch=master
)
](https://travis-ci.org/codahale/hdrhistogram)
A pure Go implementation of the
[
HDR Histogram
](
https://github.com/HdrHistogram/HdrHistogram
)
.
> A Histogram that supports recording and analyzing sampled data value counts
> across a configurable integer value range with configurable value precision
> within the range. Value precision is expressed as the number of significant
> digits in the value recording, and provides control over value quantization
> behavior across the value range and the subsequent value resolution at any
> given level.
For documentation, check
[
godoc
](
http://godoc.org/github.com/codahale/hdrhistogram
)
.
vendor/github.com/codahale/hdrhistogram/hdr.go
0 → 100644
View file @
e84ff248
// Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram
// data structure. The HDR Histogram allows for fast and accurate analysis of
// the extreme ranges of data with non-normal distributions, like latency.
package
hdrhistogram
import
(
"fmt"
"math"
)
// A Bracket is a part of a cumulative distribution.
type
Bracket
struct
{
Quantile
float64
Count
,
ValueAt
int64
}
// A Snapshot is an exported view of a Histogram, useful for serializing them.
// A Histogram can be constructed from it by passing it to Import.
type
Snapshot
struct
{
LowestTrackableValue
int64
HighestTrackableValue
int64
SignificantFigures
int64
Counts
[]
int64
}
// A Histogram is a lossy data structure used to record the distribution of
// non-normally distributed data (like latency) with a high degree of accuracy
// and a bounded degree of precision.
type
Histogram
struct
{
lowestTrackableValue
int64
highestTrackableValue
int64
unitMagnitude
int64
significantFigures
int64
subBucketHalfCountMagnitude
int32
subBucketHalfCount
int32
subBucketMask
int64
subBucketCount
int32
bucketCount
int32
countsLen
int32
totalCount
int64
counts
[]
int64
}
// New returns a new Histogram instance capable of tracking values in the given
// range and with the given amount of precision.
func
New
(
minValue
,
maxValue
int64
,
sigfigs
int
)
*
Histogram
{
if
sigfigs
<
1
||
5
<
sigfigs
{
panic
(
fmt
.
Errorf
(
"sigfigs must be [1,5] (was %d)"
,
sigfigs
))
}
largestValueWithSingleUnitResolution
:=
2
*
math
.
Pow10
(
sigfigs
)
subBucketCountMagnitude
:=
int32
(
math
.
Ceil
(
math
.
Log2
(
float64
(
largestValueWithSingleUnitResolution
))))
subBucketHalfCountMagnitude
:=
subBucketCountMagnitude
if
subBucketHalfCountMagnitude
<
1
{
subBucketHalfCountMagnitude
=
1
}
subBucketHalfCountMagnitude
--
unitMagnitude
:=
int32
(
math
.
Floor
(
math
.
Log2
(
float64
(
minValue
))))
if
unitMagnitude
<
0
{
unitMagnitude
=
0
}
subBucketCount
:=
int32
(
math
.
Pow
(
2
,
float64
(
subBucketHalfCountMagnitude
)
+
1
))
subBucketHalfCount
:=
subBucketCount
/
2
subBucketMask
:=
int64
(
subBucketCount
-
1
)
<<
uint
(
unitMagnitude
)
// determine exponent range needed to support the trackable value with no
// overflow:
smallestUntrackableValue
:=
int64
(
subBucketCount
)
<<
uint
(
unitMagnitude
)
bucketsNeeded
:=
int32
(
1
)
for
smallestUntrackableValue
<
maxValue
{
smallestUntrackableValue
<<=
1
bucketsNeeded
++
}
bucketCount
:=
bucketsNeeded
countsLen
:=
(
bucketCount
+
1
)
*
(
subBucketCount
/
2
)
return
&
Histogram
{
lowestTrackableValue
:
minValue
,
highestTrackableValue
:
maxValue
,
unitMagnitude
:
int64
(
unitMagnitude
),
significantFigures
:
int64
(
sigfigs
),
subBucketHalfCountMagnitude
:
subBucketHalfCountMagnitude
,
subBucketHalfCount
:
subBucketHalfCount
,
subBucketMask
:
subBucketMask
,
subBucketCount
:
subBucketCount
,
bucketCount
:
bucketCount
,
countsLen
:
countsLen
,
totalCount
:
0
,
counts
:
make
([]
int64
,
countsLen
),
}
}
// ByteSize returns an estimate of the amount of memory allocated to the
// histogram in bytes.
//
// N.B.: This does not take into account the overhead for slices, which are
// small, constant, and specific to the compiler version.
func
(
h
*
Histogram
)
ByteSize
()
int
{
return
6
*
8
+
5
*
4
+
len
(
h
.
counts
)
*
8
}
// Merge merges the data stored in the given histogram with the receiver,
// returning the number of recorded values which had to be dropped.
func
(
h
*
Histogram
)
Merge
(
from
*
Histogram
)
(
dropped
int64
)
{
i
:=
from
.
rIterator
()
for
i
.
next
()
{
v
:=
i
.
valueFromIdx
c
:=
i
.
countAtIdx
if
h
.
RecordValues
(
v
,
c
)
!=
nil
{
dropped
+=
c
}
}
return
}
// TotalCount returns total number of values recorded.
func
(
h
*
Histogram
)
TotalCount
()
int64
{
return
h
.
totalCount
}
// Max returns the approximate maximum recorded value.
func
(
h
*
Histogram
)
Max
()
int64
{
var
max
int64
i
:=
h
.
iterator
()
for
i
.
next
()
{
if
i
.
countAtIdx
!=
0
{
max
=
i
.
highestEquivalentValue
}
}
return
h
.
highestEquivalentValue
(
max
)
}
// Min returns the approximate minimum recorded value.
func
(
h
*
Histogram
)
Min
()
int64
{
var
min
int64
i
:=
h
.
iterator
()
for
i
.
next
()
{
if
i
.
countAtIdx
!=
0
&&
min
==
0
{
min
=
i
.
highestEquivalentValue
break
}
}
return
h
.
lowestEquivalentValue
(
min
)
}
// Mean returns the approximate arithmetic mean of the recorded values.
func
(
h
*
Histogram
)
Mean
()
float64
{
if
h
.
totalCount
==
0
{
return
0
}
var
total
int64
i
:=
h
.
iterator
()
for
i
.
next
()
{
if
i
.
countAtIdx
!=
0
{
total
+=
i
.
countAtIdx
*
h
.
medianEquivalentValue
(
i
.
valueFromIdx
)
}
}
return
float64
(
total
)
/
float64
(
h
.
totalCount
)
}
// StdDev returns the approximate standard deviation of the recorded values.
func
(
h
*
Histogram
)
StdDev
()
float64
{
if
h
.
totalCount
==
0
{
return
0
}
mean
:=
h
.
Mean
()
geometricDevTotal
:=
0.0
i
:=
h
.
iterator
()
for
i
.
next
()
{
if
i
.
countAtIdx
!=
0
{
dev
:=
float64
(
h
.
medianEquivalentValue
(
i
.
valueFromIdx
))
-
mean
geometricDevTotal
+=
(
dev
*
dev
)
*
float64
(
i
.
countAtIdx
)
}
}
return
math
.
Sqrt
(
geometricDevTotal
/
float64
(
h
.
totalCount
))
}
// Reset deletes all recorded values and restores the histogram to its original
// state.
func
(
h
*
Histogram
)
Reset
()
{
h
.
totalCount
=
0
for
i
:=
range
h
.
counts
{
h
.
counts
[
i
]
=
0
}
}
// RecordValue records the given value, returning an error if the value is out
// of range.
func
(
h
*
Histogram
)
RecordValue
(
v
int64
)
error
{
return
h
.
RecordValues
(
v
,
1
)
}
// RecordCorrectedValue records the given value, correcting for stalls in the
// recording process. This only works for processes which are recording values
// at an expected interval (e.g., doing jitter analysis). Processes which are
// recording ad-hoc values (e.g., latency for incoming requests) can't take
// advantage of this.
func
(
h
*
Histogram
)
RecordCorrectedValue
(
v
,
expectedInterval
int64
)
error
{
if
err
:=
h
.
RecordValue
(
v
);
err
!=
nil
{
return
err
}
if
expectedInterval
<=
0
||
v
<=
expectedInterval
{
return
nil
}
missingValue
:=
v
-
expectedInterval
for
missingValue
>=
expectedInterval
{
if
err
:=
h
.
RecordValue
(
missingValue
);
err
!=
nil
{
return
err
}
missingValue
-=
expectedInterval
}
return
nil
}
// RecordValues records n occurrences of the given value, returning an error if
// the value is out of range.
func
(
h
*
Histogram
)
RecordValues
(
v
,
n
int64
)
error
{
idx
:=
h
.
countsIndexFor
(
v
)
if
idx
<
0
||
int
(
h
.
countsLen
)
<=
idx
{
return
fmt
.
Errorf
(
"value %d is too large to be recorded"
,
v
)
}
h
.
counts
[
idx
]
+=
n
h
.
totalCount
+=
n
return
nil
}
// ValueAtQuantile returns the recorded value at the given quantile (0..100).
func
(
h
*
Histogram
)
ValueAtQuantile
(
q
float64
)
int64
{
if
q
>
100
{
q
=
100
}
total
:=
int64
(
0
)
countAtPercentile
:=
int64
(((
q
/
100
)
*
float64
(
h
.
totalCount
))
+
0.5
)
i
:=
h
.
iterator
()
for
i
.
next
()
{
total
+=
i
.
countAtIdx
if
total
>=
countAtPercentile
{
return
h
.
highestEquivalentValue
(
i
.
valueFromIdx
)
}
}
return
0
}
// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func
(
h
*
Histogram
)
CumulativeDistribution
()
[]
Bracket
{
var
result
[]
Bracket
i
:=
h
.
pIterator
(
1
)
for
i
.
next
()
{
result
=
append
(
result
,
Bracket
{
Quantile
:
i
.
percentile
,
Count
:
i
.
countToIdx
,
ValueAt
:
i
.
highestEquivalentValue
,
})
}
return
result
}
// SignificantFigures returns the significant figures used to create the
// histogram
func
(
h
*
Histogram
)
SignificantFigures
()
int64
{
return
h
.
significantFigures
}
// LowestTrackableValue returns the lower bound on values that will be added
// to the histogram
func
(
h
*
Histogram
)
LowestTrackableValue
()
int64
{
return
h
.
lowestTrackableValue
}
// HighestTrackableValue returns the upper bound on values that will be added
// to the histogram
func
(
h
*
Histogram
)
HighestTrackableValue
()
int64
{
return
h
.
highestTrackableValue
}
// Histogram bar for plotting
type
Bar
struct
{
From
,
To
,
Count
int64
}
// Pretty print as csv for easy plotting
func
(
b
Bar
)
String
()
string
{
return
fmt
.
Sprintf
(
"%v, %v, %v
\n
"
,
b
.
From
,
b
.
To
,
b
.
Count
)
}
// Distribution returns an ordered list of bars of the
// distribution of recorded values, counts can be normalized to a probability
func
(
h
*
Histogram
)
Distribution
()
(
result
[]
Bar
)
{
i
:=
h
.
iterator
()
for
i
.
next
()
{
result
=
append
(
result
,
Bar
{
Count
:
i
.
countAtIdx
,
From
:
h
.
lowestEquivalentValue
(
i
.
valueFromIdx
),
To
:
i
.
highestEquivalentValue
,
})
}
return
result
}
// Equals returns true if the two Histograms are equivalent, false if not.
func
(
h
*
Histogram
)
Equals
(
other
*
Histogram
)
bool
{
switch
{
case
h
.
lowestTrackableValue
!=
other
.
lowestTrackableValue
,
h
.
highestTrackableValue
!=
other
.
highestTrackableValue
,
h
.
unitMagnitude
!=
other
.
unitMagnitude
,
h
.
significantFigures
!=
other
.
significantFigures
,
h
.
subBucketHalfCountMagnitude
!=
other
.
subBucketHalfCountMagnitude
,
h
.
subBucketHalfCount
!=
other
.
subBucketHalfCount
,
h
.
subBucketMask
!=
other
.
subBucketMask
,
h
.
subBucketCount
!=
other
.
subBucketCount
,
h
.
bucketCount
!=
other
.
bucketCount
,
h
.
countsLen
!=
other
.
countsLen
,
h
.
totalCount
!=
other
.
totalCount
:
return
false
default
:
for
i
,
c
:=
range
h
.
counts
{
if
c
!=
other
.
counts
[
i
]
{
return
false
}
}
}
return
true
}
// Export returns a snapshot view of the Histogram. This can be later passed to
// Import to construct a new Histogram with the same state.
func
(
h
*
Histogram
)
Export
()
*
Snapshot
{
return
&
Snapshot
{
LowestTrackableValue
:
h
.
lowestTrackableValue
,
HighestTrackableValue
:
h
.
highestTrackableValue
,
SignificantFigures
:
h
.
significantFigures
,
Counts
:
append
([]
int64
(
nil
),
h
.
counts
...
),
// copy
}
}
// Import returns a new Histogram populated from the Snapshot data (which the
// caller must stop accessing).
func
Import
(
s
*
Snapshot
)
*
Histogram
{
h
:=
New
(
s
.
LowestTrackableValue
,
s
.
HighestTrackableValue
,
int
(
s
.
SignificantFigures
))
h
.
counts
=
s
.
Counts
totalCount
:=
int64
(
0
)
for
i
:=
int32
(
0
);
i
<
h
.
countsLen
;
i
++
{
countAtIndex
:=
h
.
counts
[
i
]
if
countAtIndex
>
0
{
totalCount
+=
countAtIndex
}
}
h
.
totalCount
=
totalCount
return
h
}
func
(
h
*
Histogram
)
iterator
()
*
iterator
{
return
&
iterator
{
h
:
h
,
subBucketIdx
:
-
1
,
}
}
func
(
h
*
Histogram
)
rIterator
()
*
rIterator
{
return
&
rIterator
{
iterator
:
iterator
{
h
:
h
,
subBucketIdx
:
-
1
,
},
}
}
func
(
h
*
Histogram
)
pIterator
(
ticksPerHalfDistance
int32
)
*
pIterator
{
return
&
pIterator
{
iterator
:
iterator
{
h
:
h
,
subBucketIdx
:
-
1
,
},
ticksPerHalfDistance
:
ticksPerHalfDistance
,
}
}
func
(
h
*
Histogram
)
sizeOfEquivalentValueRange
(
v
int64
)
int64
{
bucketIdx
:=
h
.
getBucketIndex
(
v
)
subBucketIdx
:=
h
.
getSubBucketIdx
(
v
,
bucketIdx
)
adjustedBucket
:=
bucketIdx
if
subBucketIdx
>=
h
.
subBucketCount
{
adjustedBucket
++
}
return
int64
(
1
)
<<
uint
(
h
.
unitMagnitude
+
int64
(
adjustedBucket
))
}
func
(
h
*
Histogram
)
valueFromIndex
(
bucketIdx
,
subBucketIdx
int32
)
int64
{
return
int64
(
subBucketIdx
)
<<
uint
(
int64
(
bucketIdx
)
+
h
.
unitMagnitude
)
}
func
(
h
*
Histogram
)
lowestEquivalentValue
(
v
int64
)
int64
{
bucketIdx
:=
h
.
getBucketIndex
(
v
)
subBucketIdx
:=
h
.
getSubBucketIdx
(
v
,
bucketIdx
)
return
h
.
valueFromIndex
(
bucketIdx
,
subBucketIdx
)
}
func
(
h
*
Histogram
)
nextNonEquivalentValue
(
v
int64
)
int64
{
return
h
.
lowestEquivalentValue
(
v
)
+
h
.
sizeOfEquivalentValueRange
(
v
)
}
func
(
h
*
Histogram
)
highestEquivalentValue
(
v
int64
)
int64
{
return
h
.
nextNonEquivalentValue
(
v
)
-
1
}
func
(
h
*
Histogram
)
medianEquivalentValue
(
v
int64
)
int64
{
return
h
.
lowestEquivalentValue
(
v
)
+
(
h
.
sizeOfEquivalentValueRange
(
v
)
>>
1
)
}
func
(
h
*
Histogram
)
getCountAtIndex
(
bucketIdx
,
subBucketIdx
int32
)
int64
{
return
h
.
counts
[
h
.
countsIndex
(
bucketIdx
,
subBucketIdx
)]
}
func
(
h
*
Histogram
)
countsIndex
(
bucketIdx
,
subBucketIdx
int32
)
int32
{
bucketBaseIdx
:=
(
bucketIdx
+
1
)
<<
uint
(
h
.
subBucketHalfCountMagnitude
)
offsetInBucket
:=
subBucketIdx
-
h
.
subBucketHalfCount
return
bucketBaseIdx
+
offsetInBucket
}
func
(
h
*
Histogram
)
getBucketIndex
(
v
int64
)
int32
{
pow2Ceiling
:=
bitLen
(
v
|
h
.
subBucketMask
)
return
int32
(
pow2Ceiling
-
int64
(
h
.
unitMagnitude
)
-
int64
(
h
.
subBucketHalfCountMagnitude
+
1
))
}
func
(
h
*
Histogram
)
getSubBucketIdx
(
v
int64
,
idx
int32
)
int32
{
return
int32
(
v
>>
uint
(
int64
(
idx
)
+
int64
(
h
.
unitMagnitude
)))
}
func
(
h
*
Histogram
)
countsIndexFor
(
v
int64
)
int
{
bucketIdx
:=
h
.
getBucketIndex
(
v
)
subBucketIdx
:=
h
.
getSubBucketIdx
(
v
,
bucketIdx
)
return
int
(
h
.
countsIndex
(
bucketIdx
,
subBucketIdx
))
}
type
iterator
struct
{
h
*
Histogram
bucketIdx
,
subBucketIdx
int32
countAtIdx
,
countToIdx
,
valueFromIdx
int64
highestEquivalentValue
int64
}
func
(
i
*
iterator
)
next
()
bool
{
if
i
.
countToIdx
>=
i
.
h
.
totalCount
{
return
false
}
// increment bucket
i
.
subBucketIdx
++
if
i
.
subBucketIdx
>=
i
.
h
.
subBucketCount
{
i
.
subBucketIdx
=
i
.
h
.
subBucketHalfCount
i
.
bucketIdx
++
}
if
i
.
bucketIdx
>=
i
.
h
.
bucketCount
{
return
false
}
i
.
countAtIdx
=
i
.
h
.
getCountAtIndex
(
i
.
bucketIdx
,
i
.
subBucketIdx
)
i
.
countToIdx
+=
i
.
countAtIdx
i
.
valueFromIdx
=
i
.
h
.
valueFromIndex
(
i
.
bucketIdx
,
i
.
subBucketIdx
)
i
.
highestEquivalentValue
=
i
.
h
.
highestEquivalentValue
(
i
.
valueFromIdx
)
return
true
}
type
rIterator
struct
{
iterator
countAddedThisStep
int64
}
func
(
r
*
rIterator
)
next
()
bool
{
for
r
.
iterator
.
next
()
{
if
r
.
countAtIdx
!=
0
{
r
.
countAddedThisStep
=
r
.
countAtIdx
return
true
}
}
return
false
}
type
pIterator
struct
{
iterator
seenLastValue
bool
ticksPerHalfDistance
int32
percentileToIteratorTo
float64
percentile
float64
}
func
(
p
*
pIterator
)
next
()
bool
{
if
!
(
p
.
countToIdx
<
p
.
h
.
totalCount
)
{
if
p
.
seenLastValue
{
return
false
}
p
.
seenLastValue
=
true
p
.
percentile
=
100
return
true
}
if
p
.
subBucketIdx
==
-
1
&&
!
p
.
iterator
.
next
()
{
return
false
}
var
done
=
false
for
!
done
{
currentPercentile
:=
(
100.0
*
float64
(
p
.
countToIdx
))
/
float64
(
p
.
h
.
totalCount
)
if
p
.
countAtIdx
!=
0
&&
p
.
percentileToIteratorTo
<=
currentPercentile
{
p
.
percentile
=
p
.
percentileToIteratorTo
halfDistance
:=
math
.
Trunc
(
math
.
Pow
(
2
,
math
.
Trunc
(
math
.
Log2
(
100.0
/
(
100.0
-
p
.
percentileToIteratorTo
)))
+
1
))
percentileReportingTicks
:=
float64
(
p
.
ticksPerHalfDistance
)
*
halfDistance
p
.
percentileToIteratorTo
+=
100.0
/
percentileReportingTicks
return
true
}
done
=
!
p
.
iterator
.
next
()
}
return
true
}
func
bitLen
(
x
int64
)
(
n
int64
)
{
for
;
x
>=
0x8000
;
x
>>=
16
{
n
+=
16
}
if
x
>=
0x80
{
x
>>=
8
n
+=
8
}
if
x
>=
0x8
{
x
>>=
4
n
+=
4
}
if
x
>=
0x2
{
x
>>=
2
n
+=
2
}
if
x
>=
0x1
{
n
++
}
return
}
vendor/github.com/codahale/hdrhistogram/window.go
0 → 100644
View file @
e84ff248
package
hdrhistogram
// A WindowedHistogram combines histograms to provide windowed statistics.
type
WindowedHistogram
struct
{
idx
int
h
[]
Histogram
m
*
Histogram
Current
*
Histogram
}
// NewWindowed creates a new WindowedHistogram with N underlying histograms with
// the given parameters.
func
NewWindowed
(
n
int
,
minValue
,
maxValue
int64
,
sigfigs
int
)
*
WindowedHistogram
{
w
:=
WindowedHistogram
{
idx
:
-
1
,
h
:
make
([]
Histogram
,
n
),
m
:
New
(
minValue
,
maxValue
,
sigfigs
),
}
for
i
:=
range
w
.
h
{
w
.
h
[
i
]
=
*
New
(
minValue
,
maxValue
,
sigfigs
)
}
w
.
Rotate
()
return
&
w
}
// Merge returns a histogram which includes the recorded values from all the
// sections of the window.
func
(
w
*
WindowedHistogram
)
Merge
()
*
Histogram
{
w
.
m
.
Reset
()
for
_
,
h
:=
range
w
.
h
{
w
.
m
.
Merge
(
&
h
)
}
return
w
.
m
}
// Rotate resets the oldest histogram and rotates it to be used as the current
// histogram.
func
(
w
*
WindowedHistogram
)
Rotate
()
{
w
.
idx
++
w
.
Current
=
&
w
.
h
[
w
.
idx
%
len
(
w
.
h
)]
w
.
Current
.
Reset
()
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment